
Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Assignment 1

1. The task is to design and understand an LPA (low precision arithmetic)
floating point arithmetic standard that uses the fewest bits that can ap-
proximate any x with a = .01 ≤ x < b = 1000 to 2% relative accuracy.
Design the LPA system so that a and b are in the range of normalized
numbers. Use an IEEE like system, with fraction bits, exponent bits etc.,
but as few as possible.

(a) How many fraction bits are needed?

(b) How many exponent bits are needed?

(c) What is the exponent offset?

(d) What is εmach in this LPA system? This is the same as asking what
is distance between 1 and the smallest floating point number larger
than 1, though the answers may differ by a factor of 2.

(e) What is the smallest non-zero normalized number?

(f) What is the smallest non-zero denormalized number?

2. This exercise asks you to go through some aspects of linear recurrence
relations that was covered in class.

(a) Consider the four term recurrence relation

xn+1 = −2xn + xn−1 + xn−2 . (1)

Let S be the set of all sequences x0, x1, x2, · · · (defined for all n ≥ 0)
that satisfy the recurrence relation (1) for all n ≥ 2. Show that S
is a vector space of dimension 3. Remarks. There are two parts to
this. First show S is a vector space by showing that if x ∈ S and
y ∈ S are two such semi-infinite (i.e., defined for all n ≥ 0 sequences
in S and if a is a number, then the sequence ax = ax0, ax1, · · ·
has ax ∈ S, and x + y ∈ S. Then show S is three dimensional by
showing that there are three sequences u ∈ S, v ∈ S, and w ∈ S that
are linearly independent and that any x ∈ S may be represented as
x = au+bv+cw for some numbers a, b, c. The purpose of this exercise
it to have you go through the definition of vector space and basis in
an abstract way, which will be useful in the rest of the course. For a
review of linear algebra, consider the book by Peter Lax.

(b) Consider the recurrence relation

xn+1 = xn − xn−1 . (2)

1

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Let S be the set of all doubly infinite sequences (i.e., xn defined for
all integers n, both positive and negative) that satisfy (2). Show that
every x ∈ S is bounded. Remarks. A sequence is bounded if there is
a C (an upper bound) so that |xn| ≤ C for all n. For example, the
sequence xn = sin(n)− 3 cos(n2) (warning, this sequence is not in S)
is bounded because the sine or cosine of anything is not more than
1, therefore C = 4 works. Some tricks for boundedness are

• If x and y are bounded, then x + y is bounded. To see this,
suppose Cx is an upper bound for x and Cy is an upper bound
for y, then C = Cx + Cy is an upper bound for x+ y.

• If x is bounded and a is a number, then ax is bounded. If Cx is
an upper bound for x, then |a|Cx is an upper bound for ax (the
absolute value is because a might be negative).

• The linear algebra of solutions of recurrence relations and the
properties of bounded sequences also apply if the numbers xn are
allowed to be complex numbers that are not real. For example,
if z2 − z + 1 = 0 then z is not real but xn = zn is in S. The
multiplier, a, above does not have to be real.

• If z = ξ + iη is a complex number (ξ and η being real), then

|z|2 = ξ2 + η2 defines the norm |z|. This satisfies |zw| = |z| · |w|
(w being any other complex number). [If you haven’t seen this
before, do the algebra to check it for yourself. It’s easy and very
important.] In particular, |zn| = |z|n. [Why is it true both for
n > 0 and n < 0 if z 6= 0?] Therefore, if |z| = 1, then the
sequence zn is bounded.

(c) This asks you to find a formula for the solution of an inhomogeneous
Fibonacci sequence

yn+1 = yn + yn−1 + rn . (3)

The numbers rn are called forcing or inhomogeneous terms. First find
a formula for the sequence Tk,n that has forcing only when n = k.
Specifically,

Tk,n = 0 for n < k ,

rn = 0 for n 6= k ,

rk = 1 .

For each k ≥ 2 there is a sequence Tk,n defined for n ≥ 0. This
collection of sequences is sometimes called the fundamental solution
of the recurrence. Second show that if Tk,n is a fundamental solution,
then the solution of (3) is

yn = xn +

∞∑
k=2

rkTk,n . (4)

2

Here, x is a solution of the homogeneous (rn = 0 for all n) Fibonacci
relation. You might worry that the infinite sum does not converge,
but you don’t have to worry because, for each n there are only finitely
many k with Tk,n 6= 0. The sums in (4) are finite sums.

(d) Show that if y0 = y1 = 1 and |rn| ≤ r for all n, then

|yn| ≤ γn
r

γ − 1
. (5)

Here γ = 1+
√

5
2 is the golden mean. Hint. The geometric sum formula

is
n−1∑
k=0

γk =
γn − 1

γ − 1
≤ γn 1

γ − 1
.

Pay attention to the mathematicians trick in the last inequality.
Dropping the −1 term in the numerator gives a valid inequality and
what you get is simpler. You lose almost nothing because for large
n, γn− 1 and γn are almost the same. Remark. If you think of rn as
coming from rounding errors, then

3. Coding and analysis.

This exercise explores the effect of roundoff in computing with three term
recurrence relations of the form

xn+1 = axn + bxn−1 . (6)

We will go “up and back down” using (6) in the forward direction and
then in the reverse direction, and then see how close the result is to the
starting x0. Specifically, we will program

going up

x2 = ax1 + bx0

x3 = ax2 + bx1

...

xM+1 = axM + bxM−1

going back down

x̂M−1 =
1

b
(xM+1 − axM)

x̂M−2 =
1

b
(xM − ax̂M−1)

x̂M−3 =
1

b
(x̂M−1 − ax̂M−2)

...

x̂0 =
1

b
(x̂2 − ax̂1)

3

Suppose all the operations here are done in double precision floating point
in the order given. Then x̂0 6= x0. The difference x̂0 = x0 depends on M ,
which is how far up you go before coming back down.

Code this experiment using four methods (at least) in one Python module:

Write a Python module with the following components:

• A function Forward(x0,x1,a,b,M) that takes arguments x0, x1, and
M and returns the tuple (xM , xM+1).

• A function Backward(xM,xMp1,a,b,M) that takes xM and xM+1 and
returns the tuple (x0, x1).

• A function UpDown(x0,x1,a,b,M) that uses Forward to compute (ap-
proximately) xM and xM+1, then uses Backward to re-compute x0

and x1. It should also return xmax = max(|xM | , |xM+1|). It should
return the tuple x0, x1 and xmax.

• A main program that does the tasks described below.

(a) Verify the correctness of Forward, Backward and UpDownfor some
simple input arguments where you can hand-compute the results.
Print the output and correct results in a way that makes it easy to
compare. Make sure your test problem would uncover errors such as
mixing up x0 with x1 or a with b. For example, do not use a = b = 1
and x0 = x1 = 1, which are the Fibonacci values. You should always
do checks like this, but this is the last time you need to hand it in.

(b) Compute (x0h,x1h) = UpDown(1., 1., 1, 1, M) and print the
errors x0h-1. and the max value for a thoughtful (not too small and
not too large) collection of M values. These should include M for
which there is no roundoff error and M where the recomputed x̂0 is
completely wrong (relative error on the order of 100% or Inf or NaN).

(c) Repeat part (3b), using non-integer x0, x1, a, and b, but with values
within, say, 1% of the integer Fibonacci values. Explain the two
observations:

• Now there is roundoff in (almost) every computed value.

• The breakdown (computed x̂0 completely wrong) happens for an
M not so different from before.

(d) Repeat part (3b) but with all integer values using the int datatype
in Python. You achieve that using 1 instead of 1. (no decimal
point). Explain that the behavior indicates that arithmetic with the
int datatype is not 32 or 64 bit integer arithmetic.

(e) Plot (on one plot) |x̂0 − x0| and xmax as a function of M . Do this
using the true Fibonacci values of part (3b) and the slightly different
values of part (3c). Make plots where the y axis is a linear scale and
a log scale and note which is easier to interpret. Explain why the log
scale results are mostly straight lines. Be careful with coding when

4

you take the log of zero. Save the plots to files and hand them in
separately.

(f) Repeat part (3c) in single precision if you can (it’s hard to force
Python to use single precision) and note the differences in the results.

(g) (Coding hint). You should have at most one program for each part
and maybe one code that does several parts. It should be very easy
to redo experiments with small changes if everything is automated,
including creating and labelling plots.

5

