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Assignment 2

Corrections to Exercise 1.

• an absolute value on the inequality that is now equation (1)

• a correction to what is now equation (2) to remove the 1 on the right side.

1. Consider the function u(x) = ex − 1. As background, the exponential
function has the Taylor series representation

ex =

∞∑
n=0

1

n!
xn .

This implies the series of approximations

ex = 1 + x+ · · ·+ 1

n!
xn +O(xn+1) .

More precisely, if |x| ≤ a then∣∣∣∣ex − (1 + x+ · · ·+ 1

n!
xn
)∣∣∣∣ ≤ ea 1

(n+ 1)!
|x|n+1

(1)

We write f`(y) for the floating point number closest to y. The difference,
f`(y) − y, is roundoff error. We say y is “in the range of floating point
arithmetic” if

|f`(y)− y| ≤ εmach |y| .

(a) We say that u is “well conditioned for evaluation” in a range of x val-
ues if rounding x then rounding u yields an accurate approximation
to u(x). In formulas, this is

|u(x)− f`(u(f`(x)) )| ≤ Cεmach |x| .

This presumes C is not a large number such C = 1 or C = 2. If
C = 100 we might still say u is well conditioned, but we would know
to expect the loss of at least two digits of accuracy in evaluating u.
Show that u is well conditioned in this sense if |x| ≤ 2 and x is in the
range of floating point arithmetic. Be aware that what it means for
x to be in the range of floating point arithmetic depends on which
arithmetic is used, single precision, double precision, half precision,
quad precision, whatever.
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(b) Suppose ê(x) = f`
(
ef`(x)

)
is the “the exact answer correctly rounded”

approximation to the exponential function. Consider the natural
approximation

ũ(x) = ê(x)− 1 .

Show that this has low relative accuracy for small x in the sense that

|ũ(x)− u(x)|
|u(x)|

∼ εmach

|x|
.

Here the equivalence symbol “∼” means that any x in the range of
normalized arithmetic has a x̃ within roundoff error of x so that ∼
really is almost =.

(c) Consider a hybrid algorithm that uses û = ũ(x) if |x| > α, and

u(x) ≈ û(x) = x+
1

2
x2 + · · ·+ 1

n!
xn (2)

if |x| ≤ α. What α (the largest or near largest) gives relative error

|û(x)− u(x)|
|u(x)|

≤ 10−4

in single or double precision with n = 4?

(d) Is there an n and α combination that gives relative error 10−15 in
double precision?

2. Consider the problem of estimating

A(r) = E
[
erX

]
, X ∼ N (0, 1) .

(a) Verify the formula

A(r) = e
1
2 r

2

.

Hint. A(r) = 1√
2π

∫
erxe−

1
2x

2

dx. Use the “complete the square”

formula rx − 1
2x

2 = − 1
2

(
x2 − 2rx+ r2

)
+ 1

2r
2. If b is any number,

then
∫
e−

1
2 (x−b)2 dx =

∫
e−

1
2x

2

dx. (Why? Justify your steps.)

(b) The random variable in the expectation is Y = erX . Show that

var(Y ) = e2r2 − er2 (which is more or less the same as e2r2 when r is
large).

(c) Suppose we generate n independent samples Xk ∼ N (0, 1) and use
the estimator

Ân(r) =
1

n

n∑
k=1

erXk . (3)

Find a formula for the likely size of the relative error∣∣∣Ân(r)−A(r)
∣∣∣

A(r)
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For the numerator, use the standard deviation of Ân(r). Explain
what this says about the probable accuracy of the estimator (3) when
r is large. What sample size n does it take to get approximately 1%
error when r = 2 and r = 5?

3. Suppose you have numerical data items Xk for 1 ≤ k ≤ n. A histogram
is a graph that shows how many data points are in each interval. More
precisely, let the interval (a, b) be divided into m equal size bins of length
∆x = b−a

m . A bin is an interval of length ∆x on the x−axis. We denote
them by

Bj = [ j∆x , (j + 1)∆x ] .

The interval [a, b] is the union of these bins

[a, b] = B1 ∪ · · · ∪Bm .

The bin count for bin Bj is the number of data values in Bj :

Nj = # {Xk ∈ Bj | k = 1, · · · , n} .

For this exercise, assume the Xk are independent samples from a PDF
f(x).

(a) Write a method that returns a one index numpy array with n in-
dependent exponential random variables Xk with rate parameter λ
using the sampler Xk = − 1

λ log(Uk), Uk ∼ unif(0, 1). Warning. You
have to instantiate (create) the random number generator object rng
(called a bit generator in the numpy documentation) outside this
method and pass rng as an argument to this method. Otherwise you
will get the same samples every time you call the method. The main
program should instantiate the random number generator object and
pass it to any methods that need it.

(b) Write a method that takes a one index numpy array together with
parameters a, b, m, and returns a numpy integer one index array of
bin counts.

(c) Let xj = (j+ 1
2 )∆x be the midpoint of Bj . Show that if ∆x is small,

then
Nj ≈ n∆xf(xj) .

Use this to show that bin counts may be used to estimate the PDF:

f(xj) ≈ f̂j =
Nj
n∆x

.

(d) Write a method that creates a plot with the true values f(xj) and

the estimated values f̂j for n independent samples of the exponential
distribution with rate parameter λ. In the graph, use a solid curve for
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the true f and dots for the estimates f̂j . If the estimates are very ac-
curate then the dots lie on the solid curve. [Recall coding standards,
which include numerical labels in plot titles.] Do some experiments
to show how the accuracy depends on m and n. You should see
the effects of having bins that are too small (m too large, ∆x too
small), but improving accuracy for a given ∆x if n is very large. If
Deltax is too large, then f(xj)∆x is not an accurate approximation
of Pr(X ∈ Bj).

4. This exercise is a computational exploration of the central limit theo-
rem, or CLT. There are various versions of “the” CLT that differ in their
technical hypotheses and conclusions. One version involves i.id. random
variables Y1, · · · , Yn and their sum X = Y1 + · · · + Yn. We write Y for a
generic random variable with the distribution of the Yk and write Yk ∼ Y
to express the fact that Y and Yk have the same probability distribution.
For this exercise, “the same probability distribution” just means that they
have the same probability density.1 “The” CLT says that if n is large and
if σ2

Y = var(Y ) < ∞, then X is approximately Gaussian in the sense
that the PDF of X is approximately the Gaussian PDF. The PDF of a
Gaussian random variable with mean µX and variance σ2

X is

f(x) =
1√

2πσ2
X

e
− (x−µX )2

2σ2x . (4)

This PDF is also written N (µX , σ
2
X). We write X ∼ N (µX , σ

2
X) if X has

the PDF (4).

(a) Suppose Z ∼ N (0, 1) andX = µX+σXZ. Show thatX ∼ N (µX , σ
2
X).

Hint. Suppose z and x are related by x = µX + σXx. Then Pr(x ≤
X ≤ x + dx) = f(x)dx, and x ≤ X ≤ x + dx is equivalent to
z ≤ Z ≤ z + dz, with a proper relation between dz and dx. This
gives a formula for the PDF of X in terms of the PDF of Z. Explana-
tion. This Z is called standard normal. The exercise shows that any
normal can be obtained from a standard normal by shifting (adding
µX) and scaling (multiplying by σX). Another important point: the
PDF (4) is completely determined by the parameters µX and σX .
Thus, the distribution of a normal random variable is completely de-
termined by its mean and variance. If you know X is Gaussian, its
distribution is completely determined by µx and σX .

(b) Show that if T is exponential with rate parameter λ, then

µT = E[T ] =
1

λ
, σ2

T = var(T ) =
1

λ2
. (5)

1It is possible that a random variable does not have a probability density. An example of
this is the random variable with Y = 0 or Y = 1 each with probability 1

2
. If there were a

PDF for this Y , it would be infinite at y = 0 and y = 0 and zero for all other y. There is an
informal delta function, written δ(x) that represents this idea, but it is not a proper function.
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For the variance formula, it is convenient to use the formula (verify
this)

var(T ) = E
[

(T − µT )
2
]

= E
[
T 2
]
− µ2

T .

The formulas (5) have the right units because λ has units of 1/T .

(c) Write a method to make a sample of the scaled and centered sum
involving n independent exponential random variables with the same
rate parameter:

X =
1√
nσT

(T1 + · · ·Tn − nµT ) .

Do this using one call to the exponential generator from Exercise
3. The CLT says the PDF of X should be approximately standard
normal. Estimate the PDF of X using the histogram method of
Exercise 3. For that you need a large number of independent samples
of X, which you get by calling the X sampler many times. The
warning of Exercise 3a applies here too. Experiment with different
values of n to see when the approximation is poor, when it is getting
better, and when it is pretty accurate. Note that the PDF of X is not
exactly symmetric, but is more nearly symmetric for large n. You
will need to make many X samples and have reasonably small bins to
produce an accurate estimate of the PDF ofX. The slowness of scalar
Python should be noticeable. Warning. Be careful to distinguish the
n in the CLT from the n as used in Exercise 3. You might want to
use subscripts or different letters?
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