
Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Assignment 4

1. This exercise reviews some aspects of Taylor approximations of functions
of more than one variable. it shows that the idea of directional derivative
allows you to find multi-variate Taylor approximations using one variable
calculus (which “everyone” understands).

(a) Let f(t) be a scalar-valued function. We say that f(t) = O(tp) as
t→ 0 if there is an ε > 0 and a C so that

f(t) ≤ C tp if |t| ≤ ε .

If p is not an integer and t might be negative, the corresponding thing
might be f(t) = O(|t|p). If f might be negative, the corresponding
thing might be |f(t)| = O(|t|p). The important thing is always ε > 0
and C. One of the one variable Taylor remainder formulas is

f(x+ t) = f(x) + tf ′(x) + · · ·+ tn

n!
f (n)(x) +

tn+1

(n+ 1)!
f (n+1)(ξ) .

The unknown ξ is somewhere between x and x+t (even if t < 0). The
hypothesis is that the derivative f (n+1)(y) is a continuous function of
y for y between x and x+t. A basic theorem of mathematical analysis
is that if h(y) is a continuous function of y on a finite closed1 interval,
then h is bounded (there is a C with |h(y)| ≤ C for all y in the closed
interval). Show that if the derivative f (n+1)(y) is continuous on the
closed interval [a, b], then the order n Taylor series approximation
error satisfies∣∣∣∣f(x+ t)−

(
f(x) + tf ′(x) + · · ·+ tn

n!
f (n)(x)

)∣∣∣∣ = O(|t|n+1
) . (1)

Assume that x ∈ (a, b) (meaning that a < x < b) with endpoints
excluded).

(b) Show that if f(t) = O(t) and g(t) = O(t) then h(t) = f(t)g(t) has
f(t)g(t) = O(t2). Find the general version of this for |f(t)| = O(|t|p)
and |g(t)| = O(|t|q). Explanation. This is an exercise in working with
the definition of “big Oh”. You have to show that there is an ε and
a C. You can use the fact that both f and g have their own ε and
C, but that these might be different, and that the C for fg depends
on the C for f and the (probably different) C for g.

1An interval is closed if it includes its endpoints. As an example, h(y) = 1
y

is continuous

on the open interval (0, 1), which is the set of points 0 < y < 1 (endpoints 0 and 1 excluded)
but is not continuous on the closed interval [0, 1] because it is not continuous when y = 0.
The function h(y) = 1

y
is not bounded on (0, 1).

1

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

(c) Let x have n components: x = (x1, · · · , xn). Let f(x) be so that all
the partial derivatives in the formulas we get exist and are continuous
functions of x. The gradient of f is the vector

g = ∇f =

∂f
∂x1

...
∂f
∂xn

 .

Let v be an n component vector. The directional derivative in the
direction v is

d

dt
f(x+ vt)

∣∣∣
t=0

.

Show that
d

dt
f(x+ vt)

∣∣∣
t=0

= vT∇f(x) .

The right side of this is often written v ·∇f or ∇vf . Use this and
Exercise 1 to show that

f(x+ vt) = f(x) + tgT v +O(t2) .

(d) The Hessian matrix is the n×n matrix of second partial derivatives

Hjk =
∂2f

∂xj∂xk
.

It is a theorem of calculus that H is symmetric. Show that

d2

dt2
f(x+ vt)

∣∣∣
t=0

= vTHv .

Use this and Exercise 1 to show that

f(x+ vt) = f(x) + tgT v +
t2

2
vTHv +O(t3) .

(e) A matrix H is positive definite if there is a λmin so that

vTHv ≥ λmin ‖v‖2 .

[We will see that there is such a λmin > 0 if vTHv > 0 whenever
v 6= 0.] Suppose ∇f(x∗) = 0 and H(x∗) is positive definite, show
that x∗ is a local minimizer in the sense that there is an ε > 0 so that
f(x) > f(x∗) if x 6= x∗ and ‖x− x∗‖ ≤ ε.

2. The idea of directional derivatives can be applied to functions of a matrix,
either matrix-valued functions such as f(A) = A−1 or scalar-valued func-
tions2 such as f(A) = det(A). Much of linear algebra perturbation theory

2In math, a scalar is a number or the entry of a 1×1 matrix. In physics, a scalar is a
one-component quantity that transforms in a specific way under changes of coordinates. We
are using the math definition here.

2

can be derived in this way. A simpler and equivalent form is to suppose
that A is a differentiable function of t and calculate derivatives using the
chain rule and the product rule. It is convenient to use a dot to represent
differentiation with respect to t, as

Ȧ =
d

dt
A(t) .

The entries of Ȧ are the derivatives of the entries of A(t).

(a) Show that if A(t) and B(t) are differentiable functions of t, then

d

dt
[A(t)B(t)] = ȦB +AḂ .

(b) Assume that A−1 is a differentiable function of t. Show that

d

dt
A−1(t) = −A−1(t)Ȧ(t)A−1(t) .

Give an example to show that this is not equal to either of

−A−2(t)Ȧ(t) or − Ȧ(t)A−2(t) .

Here (and often in the future) we use the notation

A−2 =
(
A−1

)2
.

(c) We say that B(t) = O(tp) if all the entries of B are order tp. Show
that

A(t) = A(0) + tȦ(0) +O(t2) .

Don’t worry if this seems easy. It is. We will write A0 for A(0).

(d) Derive the formula

d

dt
det(A) = det(A0) Tr(A−1

0 Ȧ) . (2)

Some facts:

• det(AB) = det(A) det(B).

• Tr(B) is the sum of the diagonal entries of B. Tr(AB) = Tr(BA)
(so the order on the right of (2) does not matter).

• det(I + tB) = 1 + tTr(B) +O(t2).

Remark. Tr(A) =
∑
λj(A) (the trace is the sum of the eigenvalues).

The eigenvalues λj(t) do not have to be differentiable functions of
t even if A is. Since the differentiable function is a sum of non-
differentiable functions, the singularities (places where λj(t) are not
differentiable) must cancel in some way.

3

(e) Suppose H(t) is a family of positive definite symmetric matrices and
a differentiable function of t. Suppose H(t) = L(t)LT (t) and L
is lower triangular and a differentiable function of t. Find an for-
mula/algorithm that uses L and Ḣ to compute L̇. This is perturba-
tion theory for the Cholesky decomposition.

3. A linear combination of decaying exponentials is

f(t) =

n∑
k=1

ake
−λjt . (3)

Suppose there are measurements

Yj = f(tj) + εj .

Here, the observed value Yj differs from the true value f(tj) by measure-
ment error εj (common notation in statistical estimation problems). We
write f(t, λ, a) to describe the function (3) even if the numbers λ1, · · · , λn
and a1, · · · , an) are not the values that generated the data. We “abuse
notation” to write a = (a1, · · · , an), etc. A sum of squares measure of
goodness of fit is

u(λ, a) =

n∑
j=1

(Yj − f(tj , λ, a))
2
.

Least squares parameter estimation means finding the n rates λ∗k and the
n amplitudes a∗k to minimize this function of 2n variables

(λ∗, a∗) = arg min u(λ, a) .

We will return to this optimization problem in later assignments.

This exercise involves reading from a data file, then using the data to
evaluate u and its derivatives.

This exercise uses fake data.3 The data are in three files, one ascii file
[name].py that gives the values of m and n and the names of two binary
files, one with λ and a, the other with the times tj and corresponding
Yj . Binary format means that the files contain the exact bit sequences of
the IEEE format floats that represent λ, etc. You put data in binary files
because the binary representation is more efficient (makes smaller files)
and does not require you to format floats as strings and then convert the
strings back to floats (which is not exact and can be slow). This can make
a big difference for large datasets. You (probably) cannot open a binary
file in a text editor or view it in a web browser window.

3Fake data is a technical term for artificial data generated by a computer model rather
than real data that consists of actual measurements of something. Data analysis often starts
seeing how the analysis algorithm works on fake data where you know the ground truth (the
exact form of the model and parameters) before trying it on real data.

4

There are two sets of fake data. The first set is DataInfo.py, which points
to binary files ModelParameters (containing λ and a) and TimeSeries

(containing the numbers tj and Yj). Download these along with DataAnalysis.py.
Then run DataAnalysis.py. You should get printout of the 20 data pairs
tj and Yj and the six (two sets of three) model parameters λk and ak.
Then download and run FakeData.py. This is the module that created
the fake data you just saw. It also prints the data and model values, which
should match the ones you printed before exactly.

The second set of fake data files are called DataInfo2.py, ModelParameters2
and TimeSeries2. Download these and edit DataAnalysis.py to import
DataInfo2.py (line 15). You will see that these files are bigger, with more
model parameters and more (fake) observations. Edit out the lines that
print the data (lines 30 to 33 and 42 to 45). Use this data for the tasks
below.

This exercise asks you to compute derivatives of u with respect to λ with
the amplitude parameters a fixed. Therefore, we write u(λ) for u(λ, a).
The values of a never change. Use calculus (the chain rule, etc.) to find
formulas for the gradient and hessian of u:

g = ∇u(λ) , H = D2u(λ) .

To be clear, g is a vector with n components and H is a symmetric n ×
n matrix. Add code to DataAnalysis.py that evaluates u, g and H
using these formulas. You can copy the code that evaluates f(t) from
FakeData.py.

Create a few (more than one but not a lot more than one) random di-
rections v, which can be a vector with n independent standard normal
components. For a step size s, take ∆λ = sv. Compare the actual change
in u to predicted changes using first or first and second derivatives

∆u = u(λ+ ∆λ)− u(λ)

∆u1 = gT∆λ

∆u2 = gT∆λ+
1

2
∆λTH∆λ .

Make a table of the absolute and relative errors as a function of s with
fixed v to give computational evidence that the absolute error is order s2

or s3 and the relative error is order s or s2, depending on whether you use
second derivatives. For example, you can show that an error is order s2,
you divide the error by s2, take a decreasing sequence of s values, and look
for a limit. The smallest values of s in your sequence should be so small
that roundoff spoils the results. Maybe decreasing s by a factor of ten
each time will be good, or maybe a sequence that decreases by a smaller
factor. Note, absolute error is

∆u1 −∆u

5

(or ∆u2). The error may be negative. The relative error is

∆u1 −∆u

∆u
.

Use the integrated numpy routines for evaluating gT∆λ and gTHg (a com-
bination of @ and np.dot), not scalar loops.

6

