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Assignment 5

1. Many algorithms in computational linear algebra are analytical rather
than algebraic. An algebraic algorithm is one that produces the exact an-
swer in a finite number of steps if the operations are performed in exact
arithmetic. An analytical algorithm is one that gives a sequence of ap-
proximate solutions, Sn, that converges to the exact solution S as n→∞.
Analytical algorithms never give the exact answer (in exact arithmetic1),
but they may be faster and even more accurate (in floating point arith-
metic) than algebraic algorithms. This exercise explores infinite matrix
sums. These may be matrix versions of Taylor series. The infinite matrix
sum is

S =

∞∑
k=0

Ak .

The partial sums are a sequence of approximations to S. If the sum
converges rapidly then Sn is close to S without n being very large:

Sn =

n∑
k=0

Ak .

The convergence rate is determined by the “tail sums”

S − Sn =
∑
k>n

Ak .

The triangle inequality gives bounds on the matrix norm of the tail sum:
inequality

‖S − Sn‖ ≤
∑
k>n

‖Ak‖ . (1)

There is an inequality of this form for any matrix norm that satisfies the
triangle inequality.

The terms in the sum on the right of (1) are positive (technically, non-
negative because ‖Ak‖ = 0 is possible) numbers. Any understanding of
the size of a sum of positive numbers lead to an understanding of the tail
sum on the left. The following simple tricks handle many cases:

1This can be misunderstood to imply that analytical algorithms are less accurate than
exact ones on the computer. That is true sometimes, but not always. In floating point, the
rounding errors in a supposedly exact calculation can lead to errors larger than those from an
inexact analytical approximation.
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• If 0 ≤ r < 1, then

∞∑
k=0

rk =
1

1− r
,

∑
k>n

rk = rn+1
∑
k≥0

rk =
rn+1

1− r
.

Therefore, if |ak| ≤ Crk, then∣∣∣∣∣∑
k>n

ak

∣∣∣∣∣ ≤ C rn+1

1− r
.

Notice that if r is only a little less than 1, the denominator is large
and the numerator goes to zero more slowly as n → ∞. Geometric
series converge more slowly when the ratio is close to 1.

• For any real number r, the Taylor series for er converges

er =

∞∑
k=0

1

k!
rk .

If r is large, the terms are growing for small k. For example, if r = 10
the first terms are

a0 = 1 , a1 = 10 , a2 = 50 , a3 ≈ 167 , · · · .

However, some algebra shows that ak+1 <
1
2ak if k > 2r, so the series

eventually converges like a geometric series. The series is “bad” (not
an efficient way to calculate er), but it “works” (gives an accurate
approximation, given enough computing time) for any r > 0. If r
is a large negative number, such as r = −10, not only is the sum
inefficient (it takes many terms for an accurate approximation), but
there is so much cancellation that the answer in floating point will
be inaccurate not matter how many terms you use.

(a) The “geometric series” for a matrix A would be

S = I +A+A2 + · · · .

This matrix sum is called a Neumann series (first syllable rhymes
with “toy”, second syllable is like the first syllable of “tonic”). Show
that the series converges if ‖A‖ < 1. Show that the sum is

S = (I −A)−1 .

Hint. Calculate (I −A)S, with S written as the infinite series.

(b) Write a version of the Neumann series for (A0 + ∆A)−1 that uses
A−1

0 and ∆A and powers and products and sums of these. It should
converge if A0 is invertible and A0 is small enough.

2



(c) The approximate inverse, with the “first order correction” is

(A0 + ∆A)
−1 ≈ A−1

0 −A
−1
0 ∆AA−1

0 . (2)

The error in this approximation is

R = (A0 + ∆A)
−1 −

[
A−1

0 −A
−1
0 ∆AA−1

0

]
.

Show that

‖R‖ ≤
∥∥A−1

0

∥∥3 ‖∆A‖2

1−
∥∥A−1

0

∥∥ ‖∆A‖ . (3)

Hint. Use 1b to write a series for R.
Explanation. The approximation (2) is supposed to be accurate when
∆A is small relative to A−1

0 , using matrix norms to measure size. In
that case, the denominator in (3) is essentially 1. The correction
term in (2) is linear in ∆A while the error bound has the square

‖∆A‖2. This makes R much smaller than the correction term when
∆A is small. The perturbation formula (2) is a different way to get
the derivative formula from Assignment 4.

(d) The rank of a matrix2 is the dimension of the vector space spanned
by the columns. Show that if A has rank 1, then there are column
vectors u and v with A = uvT .

(e) Write the Neumann series representation for(
A0 + uvT

)−1
.

Show that all the terms after the first two contain powers of the
number vTA−1

0 u, so the matrix geometric series reduces to a few
terms plus a numerical geometric series whose sum is known. Use
this to find an explicit formula for the inverse. Show that A0 + uvT

is invertible if and only if vTA0u 6= −1 (be careful with logic: the fact
that a formula doesn’t work doesn’t mean the object doesn’t exist).
This is called the Sherman Morrison formula. This derivation is
correct if the Neumann series converges but you can check that the
formula is true even if the series does not converge.

(f) Consider the matrix exponential series

S = eA =

∞∑
k=0

1

k!
Ak . (4)

Show that the sum converges for any square matrix A. Show that
the function S(t) = etA satisfies the matrix differential equation

d

dt
S(t) = AS(t) , S(0) = I .

2This is the column rank. A theorem of linear algebra says that the row rank (the dimension
of the space spanned by the rows) is equal to the column rank. Thus, it makes sense to call
either one the rank.
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The matrix function S(t) is sometimes called the fundamental solu-
tion of the differential equation.

2. Absolute values are multiplicative in that |ab| = |a| |b|. Matrix norms are
submultiplicative in that it is possible that ‖AB‖ < ‖A‖ ‖B‖. Show that
strict inequality can happen in the matrix case. Find a matrix and a
vector norm ‖·‖ so that the corresponding matrix norms are ‖A‖ = 2 and∥∥A2

∥∥ = 1
2 .

3. This exercise explores the use of the SVD for some ill conditioned linear
algebra problems. The matrix involved is a simplification of matrices that
arise in real applications.

The matrix computes the influence of sources on an outer ellipse on re-
ceivers on an inner ellipse. The ellipses have the form

x2 + a2y2 = r2 .

We take a > 1, so the ellipse is a circle stretched in the x direction and
squashed in the y direction. We take r = r2 for the outer ellipse and
r = r1 < r2 for the inner one. For any angle θ and r, there is a point on
the ellipse at angle θ defined by

x = s cos θ , y = s sin(θ) .

This point is on the ellipse if3

s(θ) =
r√

(a− 1) sin2(θ) + 1
. (5)

We put m emitter points on the outer ellipse with uniformly spaced θ
values between 0 and 2π.4 We put n receiver points on the inner ellipse,
also with uniformly spaced θ. The influence of emitter point with θj on
receiver point with θ = k is

ajk =
1

rjk

Here, rjk is the distance between emitter point at angle θj and receiver
point with angle θk. If the source emission at point k on the outer ellipse
is uk, then the total received intensity at receiver point with θj is

vj =

m∑
k=1

ajkuk .

3Reality check: s is constant if a = 1 (a circle), s has a maximum when θ = 0 (x axis), s
has a minimum when sin(θ) = ±1 with value smin = r/

√
a and the point x = 0, y = ±smin is

on the ellipse.
4This is not a good point distribution if a is large, but it simplifies this problem.
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(a) Write a module to compute the n×m matrix A with Au = v. Com-
pute the SVD of A (using integrated numpy linear algebra routines)
and find the smallest d so that there is a rank d approximation B to
A with relative approximation error at most ε:

‖B −A‖2 ≤ ε ‖A‖2 .

Use this SVD to factor B as an n×k matrix X and a k×m matrix Y ,
which means XY = B. Take n and m at least 1000 and experiment
with n < m, n = m, and n > m, and with various values of r1/r2.
Comment on the behavior of k: what makes k bigger or smaller.

(b) Consider an outer circle of points (R cos(φ), R sin(φ) with R > r2.
Suppose the point on this outer circle illuminates the outer ellipse
with intensity

uk(φ) =
1

rk(φ)
.

here rk(φ) is the distance between the outer ellipse point at θk and a
source at (R cos(φ), R sin(φ). Take R = r2 + δ (δ small) so that the
φ circle comes close to the outer ellipse. Make a movie of the vector
v(φ) = Au(φ) using color to visualize the values of u and putting the
points on the inner ellipse in 2D. Try to visualize the outer ellipse
values u(φ) and the location of the source point R cos(φ), R sin(φ).

(c) Make plots to illustrate the SVD of A. This should involve

• Plots of σk as a function of k. These probably should be semi-log
plots because the values of σk span many orders of magnitude.

• Plots of the left and right singular vectors (left and right singu-
lar vectors are similar in this example but not the same). See
whether the behavior of the larger k singular vectors explains
the small values of the corresponding σk.

If you automate the process of making these plots, you will be able to
quickly experiment with different r1, r2, a combinations and comment
on trends. Please include such automated code with what you upload
for this assignment.

(d) Repeat part (b) but with a low rank approximation to A. Put the
matrix B in factored form B = XY T , where X and Y have k rows.
Apply B using Bu = XY Tu = X(Y Tu) (why?). Do experiments in
which the low rank approximation is accurate but the low rank ap-
proximation is much faster to apply. Hint. Python graphics routines
are so slow that the visualization may take as long as the compu-
tation. You can observe the computation speed by doing all the
computations (finding all the vectors v(φ)) before starting the visu-
alization. The sample visualization code posted does that.

(e) Consider the problem of finding u so that Au = v and the values
of v are vj = 1 if 0 ≤ θj ≤ π

2 and vj = 0 otherwise. Use the
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computed SVD to solve the linear algebra problems. Visualizing the
vectors u is a better way to understand the results than printing
values, particularly with n or m is in the thousands. Explore as time
permits:

• For the square matrix case (n = m), see how large n can be before
A gets so nearly singular that the linear system is essentially
unsolvable on the computer even though the mathematical A is
never singular (take my word for the last part).

• When m < n, find the least squares solution. How does this
differ from the “exactly determined” (m = n) case for small and
large n?

• When m > n, the minimum norm solution.

• Explore the effect of regularization, which means adding δ ‖u‖2
to the objective function.
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