
Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Assignment 6

Correction added Nov 6. See the Values out of range discussion in Exer-
cise 5. The optimizer is unlikely to work if you don’t do something about this.

1. If u(x), with x ∈ Rd, is of class1 C2, then, for any x,

u(x+ y) = u(x) +∇u(x)T y + 1
2y
TH(x)y +O(‖y‖3) .

(a) Let H be a symmetric d×d matrix. We say that H is positive definite
if xTHx > 0 for any vector x 6= 0. Show that H is positive definite
if and only if all the eigenvalues of H are positive. The matrix is
positive semi-definite xTHx ≥ 0 for all x. Show that H is positive
semi-definite if none of its eigenvalues is negative (“are” negative?).

(b) Show that if H(x∗) is non-singular and ∇u(x∗) = 0 then x∗ is a local
minimizer of u if and only if H is positive definite. Terminology. An
x∗ with ∇u(x∗) = 0 may be called a stationary point or a critical
point. A stationary point is non-degenerate if H(x∗) is non-singular.

(c) Give an example of a stationary point where u has a positive semi-
definite Hessian that is a local minimizer and a different example
where it is not even a local minimizer. Hint. It may be easiest to
do this in one dimension, so that the Hessian “matrix” is just the
second derivative of u.

2. A function u, defined for all x ∈ Rd, is convex if

u(λx+ (1− λ)y) ≤ λu(x) + (1− λ)u(y) , if 0 ≤ λ ≤ 1 . (1)

A function is strictly convex if the inequality in (4) is strict whenever
0 < λ < 1. Suppose a and b are two points in Rd. The line segment
defined by a and b is the set of points

x(t) = a+ t(b− a) , 0 ≤ t ≤ 1 .

You can also think about the function u restricted to this segment

f[a,b](t) = u(x(t)) .

This has f[a,b](0) = u(a) and f[a,b](1) = u(b).

1The C is for continuous and the 2 means up to second order. C2 means that all partial
derivatives up to second order exist and are continuous functions of x.

1

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

(a) Show that u is a convex function of x if and only if all the functions
f[a,b](t) is a convex function of t (for 0 ≤ t ≤ 1 for every pair of
endpoints a and b.

(b) Explain how to derive the formulas

f ′[a,b](t) = ∇u(x(t))T (b− a)

f ′′[a,b](t) = (b− a)TH(x(t))(b− a) .

(c) Show that u is convex if H(x) is positive semi-definite for every x.
Show that u is strictly convex if H(x) is positive definite for every
x. You may use the fact from calculus (draw pictures to verify) that
a function f(t) is convex if f ′′ ≥ 0 for all t and strictly convex if
f ′′(t) > 0 for all t.

(d) Show that u is not convex if there is an x where H(x) has a negative
eigenvalue. You may use the corresponding one dimensional fact that
f is not convex if f ′′ < 0 somewhere.

3. This describes a gradient descent code you will need for Exercise 5. The
gradient descent optimizer code should be in its own module someName.py
that can be imported into the data fitting code of exercise 5. The gradient
descent function should take as arguments, in some order,

• An object u that has attributes u.u and u.g, which evaluate the loss
function u(x) and the gradient of the loss function g(x) = ∇u(x).
The Classes section of the notes Python for Smarties explains how
to do this.

• The initial guess x0.

• The number of gradient descent steps ns.

It should return a tuple consisting of

• A two index numpy ndarray that holds the iterates xk for k =
0, · · · , ns. Of course, x0 is the given initial guess.

• A one index numpy ndarray that contains the ns + 1 values of the
loss function u(xk).

A gradient descent step has the form

xk+1 = xk − sk∇u(xk) . (2)

Here, sk is the step size/learning rate. The predicted decrease (the amount
u goes down) is

∆up = sk ‖∇u(xk)‖22 (3)

The computed decrease (the amount u actually decreases) is

∆uc = u(xk)− u(xk − sk∇u(xk)) . (4)

2

It might happen that the computed “decrease” is negative, which means
that the loss function went up instead of down. Your code should have
the following features:

• At each iteration, the initial guess for sk (the step size for iteration
k), should be the value used for iteration k − 1.

• If the computed decrease is too small (or possibly negative), sk is
replaced by 1

2sk. “Too small” means ∆uc < α∆up.

• If the predicted decrease is too close to the actual decrease, we take a
more aggressive step, replacing sk with 2sk. “Too close to the actual
decrease” means ∆uc > β∆up.

• The step size reduction and step size expansion features cannot lead
to an infinite reduction/expansion loop.

• In view of Exercise 4, it makes sense to take α < 1
2 and β > 1

2 . In
order not to do too many evaluations of u at any one gradient descent
step, it’s probably best not to take α or β too close to 1

2 .

Test your gradient descent optimizer on the function

u(x1, x2) = x2
1 + ax2

2 .

Make a plot of u(xk) as a function of k. Try a moderate value of a (not
very far from a = 1) and a more challenging value of a (either very small
and positive or very large). Compare the convergence graphs to see that
ill conditioned optimization problems are more challenging for gradient
descent. It is important (for this last point) that the initial guess not
be on one of the coordinate axes (why), so you might try initial guess
x0 = (1, 1).

4. In the terminology of Exercise 3, show that if u(x) is quadratic, then 1
2

is the optimal relation between predicted and computed decrease. That
means, if u(x) = 1

2x
THx (and H is positive definite) the optimal step size

s∗ = arg min
s
u(x− s∇u(x))

has the feature that
∆uc = 1

2∆up .

5. This computational exercise uses gradient descent to do maximum like-
lihood fitting of a time series to a sum of simple oscillations. A simple
oscillation has the form

x(t) = a cos(ωt) + b sin(ωt) .

We are concerned with a signal that is a finite sum of simple oscillations

x(t) =

nf∑
k=1

ak cos(ωkt) + bk sin(ωkt) . (5)

3

We work with measurements at times tj that are corrupted by observation
noise

Xj = x(tj) + εj . (6)

We make the statistical hypothesis that the observation errors εj are in-
dependent Gaussians with mean zero and standard deviation σ. There
are 3nf + 1 unknown parameters, the 3nf numbers ak, bk, ωk and the
one extra parameter σ. The loss function is the negative of the log likeli-
hood function. The likelihood function says that the εj are independent
Gaussians with the same standard deviation

L =
∏
j

1√
2π σ

e−
ε2

2σ2 . (7)

Thus, we seek to minimize2

u(σ, a1, · · · , anf , b1, · · · , bnf , ω1, · · · , ωnf) = − log(L) . (8)

The loss function depends on the parameters because the signal x(t) de-
pends on the ak, bk, and ωk (through (5)), the data Xj and the model
x(tj) determine the observation residuals εj (through (6)), and σ enters
into the likelihood function (7).

Download the module modelFit.py and extend it to find the maximum
likelihood estimates of the parameters using the gradient descent module
of Exercise 3. This module should

• Read data from a run whose name is given on the command line (see
the writeup in Assignment6Codes.pdf for details).

• Define and instantiate a class that stores the data and uses it to
evaluate the log likelihood function and its gradient.

• Creates and stores to a file a plot that contains the data and the
function x̂(t) that is given by (5) with the best fit values âk, b̂k, and
ω̂k.

• If everything is automated, it should be easy to experiment with
the number of iterations to see whether the fit stops improving. (Of
course, it never stops improving completely, so iterate until the curve
x̂(t) stops changing).

Values out of range. It can happen (and usually does in real problems)
that the loss/objective function u(x) is not defined for all x. Even if the
definition formula defines a function for all x, it often happens that the

2Coding tip: Evaluate ` = log(L) as a sum rather than L as a product. If you evaluate the
product (7), it will overflow (be larger than the largest floating point number) or underflow
(be closer to zero than the smallest positive floating point number). Try it and see. Of course,
maximizing ` is equivalent, in exact arithmetic, to maximizing L. In floating point, ` works
and L does not.

4

result is not what the application calls for. Mathematically, we say that
the optimization of u is to happen not over all x but only over some feasible
set, Ω ⊂ Rd. An infeasible point x /∈ Ω might be infeasible because u is
not defined there, or because we want the “best” x only from the feasible
set rather than for all x.

The log likelihood function of this exercise requires σ to be positive. The
likelihood formula (7) makes sense (as a formula) if σ < 0 but this makes
L < 0 so the log likelihood function (8) is not defined. The feasible set is

Ω =
{
σ, a1, · · · , ωnf | σ > 0

}
.

An optimization algorithm such as gradient descent may propose an infea-
sible point xk+1 even if xk is feasible. The optimization algorithm must
reject such a proposal if it is to find the desired optimal value x∗ ∈ Ω. The
line search strategy of Exercise 3 gives a simple way to do this: The func-
tion u.u should return inf (the IEEE floating point standard “number”
that is larger than any true floating point number) if x is not feasible.
There are (at least) two ways to make inf in Python. They are equal
because there is only one bit string in the IEEE floating point standard
that represents inf.

coreInf = float(’inf’) # in core Python

npInf = np.inf # "inf" is a name in the numpy

coreInf == npInf # returns True (for me, anyway)

x > coreInf # returns False if x is not infinite

x < coreInf # returns True if x is not infinite

(coreInf + x) == coreInf # returns True, inf + normal = inf

Your code for u.u will reject infeasible proposals if it includes something
like

if (sigma <= 0.): # compare to floating point zero.

sigma = 0. is bad too,

only sigma > 0 is OK

return np.inf

The line search part of the gradient descent algorithm will reject infeasi-
ble points because the computed “decrease” will be negative infinity and
therefore guaranteed to satisfy the “is too small” inequality ∆uc < α∆up.
This triggers replacing sk with 1

2sk, which will continue until sk is small
enough that xk − sk∇u(xk) is feasible.

This simple trick will not work if the optimum is on the boundary of the
feasible set. The field of “constrained optimization” dedicated to this pos-
sibility. An optimal point not on the boundary is an interior optimizer.
The loss/objective function of this Exercise has only interior (local) op-
timizers because u → ∞ as x approaches the boundary of Ω. Here, the

5

boundary of Ω is σ = 0 and you are close to the boundary if σ is small.

When σ → 0, the exponent − ε2

2σ2 in (7) goes to −∞ so log(L)→∞.

The behavior u→∞ as σ → 0 is natural from a statistical fitting prospec-
tive. The residual ε is supposed represent observation error and is modeled
as a Gaussian with mean zero and variance σ2. The ratio ε/σ is the num-
ber of standard deviations that the observation is away from its mean. In
the Gaussian distribution, it is “exponentially” unlikely that a sample is
many standard deviations from the mean. Thus, a parameter combination
with σ very small is a poor fit to the data.

6

