Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty /goodman/teaching/SciComp2024/index.html

Assignment 7
1. A nonlinear iteration is function F' with d arguments and d components.

Fl(l'ly"' ,zd)
F(x) =

Fa(x1, -+ ,xq)

We write F': R — R? and say: “F takes R? to R%.” Suppose z, is a fized
point, which means F'(x,) = x. and suppose F is differentiable near to .
The fixed point is stable (more precisely, locally asymptotically stable) if
any starting point xo produces a sequence of iterates xy by xgpr1 = F(zk)
with zp — x, as k — oo if xg is close enough to z,. The linearization of
a nonlinear mapping F' about a fixed point z, is the linear iteration

Tyl — T = A(Tp — x4) - (1)

We showed in class that a linear iteration is stable if all the eigenvalues
of A have |A] < 1. We also showed that if [A| > 1 for any eigenvalue of
A, then the linear iteration is unstable in the sense that no matter
how small you require ||zo| to be, it is possible to choose zy so that
|zk|| = oo as k — oco. We say that x, is linearly stable if the linearization
is stable, where A is the Jacobian matrix A = Df(z.). Lyapunov’s
theorem states that if x, is a linearly stable fixed point than x, is locally
asymptotically stable for the nonlinear iteration. The proof of Lyapunov’s
theorem also shows that if the linearization is unstable then the nonlinear
iteration is locally unstable in the sense that there is an » > 0 so that for
any € > 0 there is an xy with ||zg|| < € but ||zg|| > r. This implies that an
unstable fixed point (a fixed point that is linearly unstable) has no basin
of attraction. Thus, linear stability or instability implies nonlinear local
stability or instabilityﬂ

Suppose u is a loss/objective function (one component of output, d com-
ponents of input) that has all derivatives up to third order well defined
in a neighborhood of z,, and z, is a stationary point, meaning that
Vu(z,) = 0. Gradient descent with learning rate/step size s is the it-
eration

F(z) =2 — sVu(x) . (2)

Warning: An eigenvalue with |A| = 1 is called neutrally stable. A one dimensional iteration
&k+1 = A€, with such a A gives trajectories that are not asymptotically stable nor unstable
in the sense that |€;| does not go to zero or to infinity as k — oo. If A has an unstable
eigenvalue |A| > 1, then the fixed point is unstable. But if all the eigenvalues are (strongly)
stable (|A| < 1 or neutrally stable, then Lyapunov’s theorem does not apply, and z, might or
might not be stable for the nonlinear iteration.

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Newton’s method with step size s =1 is
F(x)=x— (D2u(x))71 Vu(z) . (3)
Here, D?u is the Hessian matrix of second partial derivatives.

(a) Show that if H = D?u(z.,) is positive definite then z, is at least a
local minimizer of u (meaning that z, might or might not be a global
minimizer).

(b) Show that if H is positive definite and s is small enough, then the
gradient descent iteration has z, as a stable fixed point.

(c) Show that if H is non-singular but is a saddle point (at least one
A > 0 and one X\ < 0), then z, is an unstable fixed point of gradient
descent , for any s > 0.

(d) Show that the Newton iteration has z, as a stable fixed point as
long as H is non-singular whether or not H is positive definite. Hint.
You know the eigenvalues of the zero matrix. Emphasis. Gradient
descent converges to local minima but saddle points are unstable for
gradient descent. In practice, this means that gradient descent is
unlikely to converge to a saddle point even if the initial guess is close
to it. Newton iteration can and does converge to saddles.

2. Consider the convex function of one variable
f(@)= V1422, (4)

(a) Show that there is a learning rate parameter s so that gradient de-
scent converges locally linearly from any starting point g # 0.

(b) Show that for any fixed step size parameter s there is an r so that if
xg > r, then the Newton iterates with step size s diverge to infinity:
|2n| = 00 as n — oo.

(¢) Show that Newton’s method with step size s = 1 has local quadratic
convergence for this example.

3. Consider the convex function of one variable

fla)=at. (5)

(a) Show that for any fixed learning rate parameter s there is an r so
that if zg > r, then the gradient descent iterates with learning rate
s diverge to infinity: |x,| — o0 as n — 0.

(b) Show that for step size parameter s = 1, Newton’s method iterates z,,
converge linearly to zero as n — oo for any initial guess xy. Explain
why the local convergence is linear rather than quadratic.

4. Write a module that implements Newton’s method for a loss function
u(z) = u(xy, -+ ,xq). Your algorithm should have two safeguards. One is
the linear search safeguard used for gradient descent in Assignment 6, but
always starting with step size s,, = 1 before expanding or contracting s,
to insure sufficient decrease. The other safeguard is a guarantee that the
search direction is a descent direction. Take the standard Newton search
direction

p=—H 'Vu

if H is positive definite (H is the Hessian matrix of u). Take p = —Vu if H
is not positive deﬁniteﬂ The Python/Numpy.linalg routine that computes
the Cholesky decomposition can determine whether H is positive definite
(with issues about roundoff that we will ignore for this assignment, alas).
Find a simple d = 2 example function w that is unimodal but with re-
gions where H is not positive definite. Your u should not be quadratic
(why not), but should have a non-degenerate minimizer and minimum.
Present thoughtful output (well formatted tables or scatterplots, not too
much, not too little) to demonstrate global convergence even from distant
initial guesses where H is not positive definite. Also demonstrate local
quadratic convergence. If the optimizer is x, (you may choose z, = 0 for
convenience), make sure your test problem has lots of non-vanishing third
partial derivatives at x = x,. Most real loss functions are like this. A
test problem with vanishing third derivatives at x = x, will have “super-
quadratic” convergence, which is rare in real problems.

You will be graded on the quality and thoughtfulness of the code, the out-
put, and the choice of test problem. Think about how you will test for
local quadratic convergence. This should be something more quantitative
than simply: wow, fast local convergence. Be aware that roundoff error
can interfere with local quadratic convergence once errors get too small,
and handle this issue thoughtfully.

5. This exercise uses Newton and gradient minimization to find arrangements
of n iong’| in an ion trap. The ions are held in what is called a Paul trap
by what amounts to a quadratic potential. The trick for doing this won
Wolfgang Paul a Nobel Prize in physics. The ions also repel each other
because they are electrically charged. The Wikipedia page (clickable link)
has more background and on quantum computing and an image of actual
ions in a trap (clickable link). The ions position themselves to minimize
the total potential energy of the system. Suppose the ions are arranged
on a line and ion j is at a distance r; on that line (the line is vertical
in the linked image), the potential has one body and two body terms (the

2We explained in class that there are better versions of this safeguard, but all of them seem
too complicated for a quick weekly assignment.

3A normal atom has the same number of electrons as protons and is electrically neutral.
The atoms in ion traps typically are missing one electron so they have a net positive electrical
charge.

https://en.wikipedia.org/wiki/Trapped-ion_quantum_computer
https://en.wikipedia.org/wiki/Trapped-ion_quantum_computer#/media/File:Planar_Ion_Trap;_Magnesium_Ions_(5884514798).jpg
https://en.wikipedia.org/wiki/Trapped-ion_quantum_computer#/media/File:Planar_Ion_Trap;_Magnesium_Ions_(5884514798).jpg

“bodies” are ions). The one body potential for an ion at r; is

L,
Ui(r;) = 377 -
This represents the force that holds ions in the trap. The two body po-
tential for two ions at r; and 7y, is

-1

Us(rj,ri) = el
J

(6)
This represents electro-static repulsion between ions. If there are n ions,
the total potential is

Usot(r1, -+ ,7n) = ZUl(Tj) +> Us(ry,m) - (7)

j<k

There is a term in the last sum for every pair of distinct ions j # k. You
insure that every pair contributes once by requiring j < k. The coulomb
potential @ would be infinite if j = k, but those “diagonal” terms are
omitted from the sum.

The force on ion j is the negative derivative of the potential Uyt with
respect to r; with all the other positions held constant. If you differentiate
the sum with respect to r;, you find a one body force

Fl(T’j) = —T;.

and two body forces

If r; > 7, then the sign in the numerator is 4+ and the force pushed ion j
to the right, which is away from ion k. Ion j is also pushed away from ion
k if r; < ry. This is the Coulomb electro-static repulsion. You can check
that the total force on ion j is

Fiot(rj) = =1+ w . (8)

If you differentiate the double sum on the right of with respect to
one of the ion positions, say r;, there are terms where j = 7 and k # i
and there are other terms where ¢ = k. The Coulomb potential @ is
symmetric with respect to j and k, so all the terms in the force sum
have the same form. The forces on ion j are in balance if the total force on
ion j is zero. The gradient of Uyoy with respect to the variables r; is equal
to zero (as an n component gradient vector) if the forces on all the ions are

in balance. This implies that stationary points of Ui are configurations
that don’t move.

Write code to implement this model with n particles (n being a parameter
in the code). This should take the form of a Python object that has at-
tributes that evaluate the potential function, one for the gradient and one
for the Hessian (three in all). Try the minimization using gradient descent
(code from Assignment 6) and Newton’s method (code from Exercise [4)).
Try to make a thoughtful initial guess. In particular, the starting config-
uration (initial guess) cannot have r; = 7 for j = k because that makes
the potential infinite and derivatives undefined. Things to look for and
comment on. Do as many of these or others that you find interesting as
time permits. You should do some but need not do all.

e You can find the analytical solution for n = 2 — an easy calculus
problem. Check that both optimizers give the right answer.

e Check that the optimizers give answers that agree to the accuracy to
which they are computed. The hard part of this is figuring out what
is “the accuracy to which they are computed”.

e Compare the convergence rates — local and global — for small and
large n and for good and bad starting configurations.

e Make some visualizations of the equilibrium ion positions and the
total potential as a function of iteration (particularly for poor initial
guess and for gradient descent). Think about making a movie of
the convergence for gradient descent. The ions will slowly settle into
their equilibrium positions.

e See how large n you codes can handle.

e (for people with more applied math or physics training or interest).
Try to understand the density of particles as a function of r when
n is large. You can do this computationally by making histograms
as we did to estimate probability density. You can even think about
doing this analytically, but that is beyond the training of most people
taking Scientific Computing.

