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Assignment 8

1. Suppose we know f(x), f(x + h), f ′(x) and f ′(x + h). Find a way to
combine these numbers to estimate f ′′(x) with the highest possible order
of accuracy. Said more technically, find coefficients a(h), b(h), c(h), and
d(h) and an estimator

A(h) = af(x) + bf(x+ h) + cf ′(x) + df ′(x+ h) .

The estimator should satisfy

A(h) ∼ f ′′(x) +A1h
p1 + · · · .

with the highest possible p1.

2. Write a routine that takes as input a, b, n, and f and uses the trapezoid
rule with n equally spaced points to estimatee

I =

∫ b

a

f(x) dx .

Give computational evidence that the method is second order accurate
for sufficiently regular functions.1 Choose example(s) where I is known
and where I is unknown. Here are some interesting examples. You should
select some for results to submit, but it should be easy to try a lot of them
once your code is working.

f(x) = sin(x) , a = 0, b = 1 (b = π is a poor choice)

f(x) = sin(40x) , a = 0, b = 1 (need smaller h to see the order of accuracy)

f(x) = sin(x2) , a = 0, b = 10 (answer not known)

f(x) = xr sin( 1
x ) , a = 0, b = 1, r > 0 (f(0) = 0, the order of accuracy depends on r.)

For the last example, find r where it’s second order and r where it is not.

3. Write a routine that takes a second order accurate integrator such as the
one from Exercise 2 and produces a fourth order integrator. This function
should have input n, a, b, and f . It should call the second order integrator
with n and 2n points and do one level of Richardson extrapolation. Use
code similar to that of Exercise 2 to verify that your integrator is fourth
order when f is smooth enough but not otherwise.

1This should take the form of well formatted tables with well chosen numbers of digits and
output format.
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4. There is a more general version of the SVD that allows more general norms
on “both sides”. If R is a symmetric positive definite (written SPD from
now on) matrix that is m×m, the R−norm on Rm is

‖x‖R =
(
xTRx

) 1
2 .

The R inner product is
〈x, y〉R = xTRy .

The R norm is related to the R inner product in the same way the 2 norm
is related to the ordinary inner product:

‖x‖22 = xTx , ‖x‖2R = 〈x, x〉R .

Suppose V is a matrix with p ≤ m columns vk:

V =


...

...
...

v1 v2 · · · vp
...

...
...

 .

The vectors vk are orthonormal in the R inner product if

〈vj , vk〉R = δjk =

{
1 if j = k
0 if j 6= k

Exercise 5 uses this generalized SVD when R is a diagonal set of weights

R = diag(r1, · · · , rm) ⇐⇒ 〈x, y〉R =

m∑
j=1

xjyjrj .

The matrix R is positive definite (and symmetric) if the weights are posi-
tive. The theory for the special case of “weighted `2 norms” does not seem
simpler than the theory of general inner products that do not require R
to be diagonal.

(a) Show that the columns of V are orthonormal in the R inner product
if and only if

UTRU = Ip×p .

(b) Show that if U is square and its columns are orthonormal in the R
inner product, then

UUT = R−1 .

Explanation: If R = I, which is the “standard”, `2, or “euclidian”
inner product, this is simply UTU = I ⇐⇒ UUT = I. The correct
generalization to a general R inner product might seem harder to
guess. Hint: One solution uses the Cholesky factorization of R, which
exists only if R is symmetric and positive definite. Note that if R =
LLT then R−1 = L−TL−1. The notation L−T is possible because(
L−1

)T
=
(
LT
)−1

.
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(c) Let A be an m×n matrix and S a symmetric positive definite (written
SPD) m×m matrix and R n×n and SPD. Consider the optimization
problem

max
‖x‖R=1

‖Ax‖S .

Let v1 be an optimizer and u1 = σ1Av1 with ‖u1‖S = 1. Show that

〈v1, x〉R = 0 =⇒ 〈u1, Ax〉S = 0 .

Hint: We derived this orthogonality property in class in the special
case R = In×n and S = Im×m. The same argument works here.

(d) Show that if v2 is an optimizer of ‖Ax‖S over vectors with ‖x‖R = 1
and 〈v1, x〉R = 0, and if Av2 = σ2u2, with ‖u2‖S = 1, then v1, v2 are
orthonormal in the R inner product and u1, u2 are orthonormal in
the S inner product.

(e) Show that you can continue in this way to get an m×m matrix
V and an n×n matrix U so that AV = UΣ and V TRV = I and
UTSU = I. Explanation: The relation AV = UΣ is the same relation
that the ordinary SVD satisfies, though that is more often written
A = UΣV T . The difference here is that U and V are orthogonal
matrices in the S and R inner products respectively. Here, A =
UΣV TR (you’re not asked to prove this, but it’s a consequence of
part (b)).

(f) Find a formula/algorithm that computes U and V , given inputs A,
S, and R, using the standard SVD (available in Numpy) and the
Cholesky factorizations R = LLT and S = MMT . Hint: Compute L
and M , then compute Ṽ = V L−T and Ũ = UM−T using an ordinary
SVD, then get V and U .

5. This exercise revisits Exercise 3 of Assignment 5. The matrices are a
little modified. You have the opportunity to observe things that were
missed in Assignment 5. The goal here is to discretize a linear problem
involving functions to get finite dimensional linear algebra problems that
approximate the continuous problem (the problem involving functions).
The dimensions in the matrix approximations should be large so that the
approximation is accurate, but the work and memory needed for the finite
dimensional problem, the discretized problem, grow with the dimension.

The continuous problem involves an integral operator, which is a formula
of the form

g(x) =

∫
K(x, y) f(y) dy . (1)

The function K is the integral kernel. The operation (1) is written ab-
stractly as g = Kf , where K denotes both the integral kernel function
K(x, y) and the action of the abstract integral operator.
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The discrete (or discretized) approximation involves a vector of n values
of u and m values of v.

f =

f(y1)
...

f(yn)

 =

f1

...
fn

 , g =

 g(x1)
...

g(xm)

 =

 g1

...
gm

 .

It is common to use some notation to distinguish between the function
f(y) and the vector f , such as writing fh ∈ Rn for the vector (h being a
reference to a discretization length, also called step size). Feel free to do
this if you like. The integral operator (1) is discretized by approximating
it with an m×n matrix, also called K:

g = Kf , gi =
∑
j

Kijfj . (2)

This could be written gh = Khfh if you don’t like using K for both
the integral kernel and the matrix approximation to it. We will see that
the entries of the matrix Kij are not just values of the integral kernel:
Kij 6= K(xi, yj).

As in Assignment 5, we take f to be a function defined on the outer r2

ellipse, and g to be defined on the inner r1 ellipse. Suppose p is a point
on the inner ellipse, we define

g(p) =

∫
1

|p− q|
f(q) dl(q) . (3)

The integral is over the whole outer ellipse, q is a generic point on the outer
ellipse, and dl is a unit of arc length. You can think of f as representing a
light source density for light being emitted on the outer ellipse. The value
f(q) is the intensity at the point q. Then g(p) represents the brightness
at a point p on the inner ellipse.

The integral (3) can be made more explicit using θ as a parameter for the
outer ellipse and writing

q = (s(θ) cos(θ), s(θ) sin(θ)) . (4)

We need to take s according to (5) of Assignment 5. Then2

dl =

∣∣∣∣dqdθ
∣∣∣∣ dθ , (5)

and θ can run from 0 to 2π so that q traverses the whole outer ellipse.
Then we can take points qk = q(θk), with θk = kh and h = 2π

n . You can
let k run from 0 to n − 1 (natural in Python) or from 1 to n (natural
for a mathematician). You can evaluate the derivative factor in (5) using

2This is a formula from vector calculus.
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implicit differentiation (for ds
dθ ) and the product rule. You may find that

it is easier to get the derivative formulas right if you don’t write one big
formula but define notation for pieces and compute and finally assemble
the pieces. For example, compute (in this order)

ds

dθ
,
dqx
dθ

,
dqy
dθ

,

∣∣∣∣dqdθ
∣∣∣∣ =

[(
dqx
dθ

)2

+

(
dqy
dθ

)2
] 1

2

.

This puts the specific formula (3) in the form (1) with p as x, and θ as y,
and

K(p, θ) =
1

|p− q(θ)|

∣∣∣∣dqdθ
∣∣∣∣ . (6)

(a) Discretize the integral (1), (3), (6) using n equally spaced values θk
and the trapezoid rule. Be careful to treat the beginning and end
correctly, as θ = 0 and θ = 2π refer to the same point q = (r2, 0) on
the on the x axis. Take f to be a smooth function such as the one
used for the movie in Assignment 5 and do a convergence study to
determine the accuracy as a function of n. You may find the result
surprising because it is not second order. Make a plot of log error
as a function of n and describe what this suggests for the error as a
function of n. There is no formula for the exact answer, but you can
get to within machine precision, which is called the ground truth in
accuracy studies, using a large n (but, surprisingly, not very large).

(b) Find weights rj for the outer ellipse and sj for the inner ellipse so
that ∫

f(q)2 dl(q) ≈
n−1∑
j=0

f(θj)
2rj

∫
g(p)2 dl(p) ≈

m−1∑
k=0

g(θk)2sk .

In each case, the left side should be a trapezoid rule approximation to
the integral on the right using the points qj = q(θj) and pk = p(θk).
Write code to evaluate these weights, which should use code you
created for part (a).

(c) Use the algorithm of Exercise 4 to compute and plot the first few
generalized singular vectors of the matrix defined in part 5a using
discrete weighted inner products defined by the weights rj and sk in
part 5b. Make plots for a enough values of m and n to see that there
is a limit as n and m go to infinity.

(d) Choose m and n large enough so that the first maybe ten or twenty
left and right generalized singular vectors are accurate approxima-
tions of teh m → ∞ and n → ∞ limit (the continuum limit). Make
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plots (one for left and another for right singular vectors) to see how
the larger ones look and observe why the singular values decrease.
If vhj is a left singular vector that approximates a continuous left
singular function vj(q), why is it that

σjuj(p) =

∫
1

|p− q|
vj(q) dl(q) (7)

is small? This is not a question that calls for formulas, just an un-
derstanding of what happens when you plug a function vj such as
you see in your plots into an integral like (7).
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