
Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Assignment 9

Corrections

• (1a), assume λ1 > 0 the for every part.

• (2) the Runge Kutta formulas have been corrected to add parentheses and
factors of ∆t where they were missing.

• More ideas are added about how to visualize the point cloud for the Lorenz
system and its relation to the attractor.

1. Let A be an n×n square matrix with possibly complex eigenvalues, and
right and left eigenvectors (column and row vectors respectively)

Arj = λjrj , ℓjA = λjℓj

Assume the eigenvalues are distinct and the eigenvectors are normalized
so that ℓjrj = 1 for all j. The power method for finding the largest
eigenvalue and eigenvector constructs a sequence of vectors xt ∈ Rn using
the recurrence

xt+1 =
Axt

∥Axt∥
.

Any vector norm ∥·∥ may be used. Assume that λ1 is real and largest in
the sense that |λ1| > |λj | if j ̸= 1.

(a) Suppose λ1 > 0. Show that if ℓ1x0 ̸= 0 then the following limit exists
and is a right eigenvector with eigenvalue λ1:

r̂ = lim
t→∞

xt , Ar̂ = λ1r̂ .

Show that

λ1 = lim
t→∞

∥xt+1∥
∥xt∥

. (1)

Hint. xt is a scaling of a power of A applied to x0, which means that
if yt+1 = Ayt with y0 = x0, then xt = mtyt. The mt are numbers
that might be called scaling factors or normalization factors. Express
yt and xt in terms of eigenvectors: yt =

∑
j utjrj , xt =

∑
j wtjrj .

You may use the fact (e.g., from the class Mathematical Analysis)
that if the numbers wtj have limits for each j as t → ∞, then xt has
a limit. The finite limit of the sums is the sum of the limits.

(b) Write a code to implement this power method for the 3×3 matrix
produced by the following code. You must use the seed given to get
the correct A.

1

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

import numpy.random as rn

rng = rn.default_rng(seed=19) # seed must be 19

n = 3

A = rng.normal(0., 1., [n,n])

Iterate up to some time T , which you can find by trial and error
to give results at nearly machine precision. Do not take T much
larger than that. Take x0 to be random (independent uniforms or
normals or any other continuous random variable family).1 Show
that you get an eigenvector whose eigenvalue is (1).2 Make a log plot
of ∥xt+1 − xt∥ for 0 ≤ t ≤ T , which should show that the convergence
is exponentially fast (i.e., linear on a log plot). For part (d), also find
the left eigenvector using the power iteration

zt+1 =
ztA

∥ztA∥
.

Use a similar z0 and iterate up to the same T .

(c) Show that if ℓ1x0 = 0 then the equation (1) is not satisfied (in exact
arithmetic).

(d) Use the left eigenvector ℓ̂1 computed in part (b) to orthogonalize x0

against ℓ1. That means, find a linear algebra formula for c so that
x̃0 = x0 − cr1 satisfies the orthogonality relation ℓ1x̃0 = 0. Make a
plot of the numbers

∥xt+1∥
∥xt∥

.

Explain the observation that these numbers eventually converge to
λ1 even though part (c) says they should not.

(e) (Explanation, nothing to hand in for this) The power method is a
way to find largest eigenvalues of matrices that are too large for
direct linear algebra algorithms. However, you have to be careful
because some facts of linear algebra, true facts in exact arithmetic,
are spoiled in computational algorithms because of numerical insta-
bility and inexact arithmetic. Computed results can be completely
different from “theoretical” (exact arithmetic) results, not just off by
errors on the order of machine precision.

2. Horner’s rule is a way to evaluate polynomials. Suppose p is a degree d
polynomial p(x) = a0+a1x+· · ·+adx

d. Suppose none of the coefficients is
equal to zero, which will be true in the application of Exercise 3. Horner’s

1There is literally zero chance (with true random variables in exact arithmetic) that this
fails to satisfy the criterion of part (a).

2The eigenvalue should be about 1.108717043954.

2

rule is related to re-writing of the polynomial as

a0 + a1x+ · · ·+ ad−2x
d−2 + ad−1x

d−1 + adx
d

= a0 + a1x+ · · ·+ ad−2x
d−2 + ad−1x

d−1

(
1 +

ad
ad−1

x

)
= a0 + a1x+ · · ·+ ad−2x

d−2

(
1 +

ad−1

ad−2
x

(
1 +

ad
ad−1

x

))
...

= a0

(
1 +

a1
a0

x

(
1 +

a2
a1

x

(
1 + · · ·

(
1 +

ad−1

ad−2
x

(
1 +

ad
ad−1

x

))
· · ·

)))
= a0

(
1 +

a1
a0

x

(
1 +

a2
a1

x

(
1 + · · ·

(
1 +

ad−1

ad−2
x y1

)
· · ·

)))
= a0

(
1 +

a1
a0

x

(
1 +

a2
a1

x (1 + · · · y2 · · ·)
))

...

For example,

1 + 2x+ 3x3 + 4x3 = 1 + 2x(1 + 3
2x(1 +

4
3x)) .

The Horner’s rule algorithm is

y1 = 1 +
ad

ad−1
x

y2 = 1 +
ad−1

ad−2
y1

...

p(x) = yd = a0

(
1 +

a1
a0

yd−1

)
A matrix version of Horner’s rule can be used as a time stepper for solving
the IVP for ODEs. Consider the linear ODE system

ẋ = Ax .

We saw that the solution is given in terms of the matrix exponential, which
has a power series expression

x(t+∆t) = e∆tAx(t)

=

(
I +∆tA+

1

2
∆tA2 + · · ·

)
x(t)

Consider the approximation that neglects terms beyond the fourth order
term

e∆tA ≈ I + · · ·+ ∆t4

24
A4 .

3

(a) Show that has local truncation error order ∆t5 and therefore gives a
fourth order method for a linear ODE.

(b) Show that this may be implemented using Horner’s rule

y1 =

(
I +

∆t

4
A

)
Xk

y2 =

(
I +

∆t

3
A

)
y1

...

Xk+1 = y4 = (I +∆tA) y3

(c) Suppose that if the ODE system has a nonlinear f(x). Consider the
multi-stage method

y1 = Xk +
∆t

4
f(Xk) (2)

y2 = y1 +
∆t

3
f(y1) (3)

... (4)

Xk+1 = y4 = Xk +∆tf(y3) (5)

Show that this is second order accurate in the sense that it is locally
third order accurate in the sense that the approximate solution op-
erator Xk+1 = Ŝ(Xk,∆t) defined by equations (2) through (5) has

Ŝx,∆t) = S(x,∆t) + O(∆t3). Discussion. This is the low storage
four stage Runge Kutta method. You don’t need to store Xk once
you have y1, and so on. It has the same “linearized” behavior as the
true fourth order four stage method, which is important in some ap-
plications (take Numerical Methods II to find out why), but it pays
for the low storage by going from fourth order (high) accuracy to
second order (lower).

3. Write code to implement the following 4 ODE time stepping algorithms.
In each case, the function implementing the solver should take as input
the starting point x0, the time step ∆t, the number of time steps n, and
the function f(x) that defines the ODE system. For this Exercise, you
should calculate ∆t from T (the final time you want to simulate up to)
and n. The routine should take n steps of size ∆t and return the state
Xn.

(a) Forward Euler: Xk+1 = Xk +∆tf(Xk).

(b) One of the second order two state predictor/corrector methods (mid-
point or trapezoid, you choose).

4

(c) “The” four state fourth order Runge Kutta method (see Wikipedia,
the notes, the book of Dalhquist and Björk or another source for the
exact formulas). There should be four evaluations of f per time step.
This method is often called RK4.

(d) The four stage low storage RK method defined by equations (2)
thfough (5).

Write a separate function for each method so that you can experiment
with the different methods individually or in whatever combination you
want. Use the code validation based on asymptotic error expansions to
determine the order of accuracy of each method using a sequence ∆t1 = T

n ,

∆t2 = 1
2∆t1 = T

2n , etc. Use as test problems the linear problem

u̇ = −v

v̇ = u

u(0) = 1 , v(0) = 0 .

and the non-linear problem

u̇ = −
(
x2 + y2

)
v

v̇ =
(
x2 + y2

)
u

u(0) = 1 , v(0) = 0 .

The solution to both problems is u(t) = cos(t), v(t) = sin(t).

Use a fixed but small ∆t and compute trajectories for long times for the
linear problem using Euler and RK4 (the linear and nonlinear versions of
RK4 are the same for a linear problem). Make a scatterplot of the tra-
jectories. Note how qualitative behavior of the numerical approximations
differs from that of the true solution and from each other. The scatterplot
of the trajectory of the true solution is a circle. Comment on the statement
that numerical approximations get the qualitative behavior right even if
they get the quantitative values wrong. Comment on the time it takes for
the two methods to “drift” off the exact solution circle.

Choose one of these to do. Try to explore beyond what’s explicitly asked.
Make sure your code is up to standard, in terms of coding itself, automation,
and output and visualization.

Lorenz system and chaos The Lorenz system is described in Section 8.7 of
the notes by Bindel and me (link in the Materials page of the class web
site). Apply the fixed time step ODE solver from Exercise 3 to compute
the 12 = 3+ 3 · 3 component trajectories (x(t), A(t)), with A(t) being the
Jacobian sensitivity matrix

Aij(t, x(0)) =
∂Si(t, x(0))

∂xj(0)
.

5

The notes explain the ODE that A satisfies. Do not write a special ODE
solver, only write an f that takes a 12 component argument and returns
a 12 component result. If this code is too slow, you may use a simpler
code that only computes the 3 component trajectory x(t) for some parts
of this Exercise.

1. Verify that things work by making a figure like Figure 8.4 in the
notes. The Matplotlib documentation has code that does exactly
this here. Documentation (clickable link) You may copy the graphics
parts but you need to put the solver method and time step in the title
and, of course, use your ODE solver instead of theirs.3 You should
also save the plot in a file to submit with your writeup. See whether
you can tell the difference between large and small time steps or good
(RK4) and bad (Euler) solvers in the picture.

2. (Movie) Choose a large-ish number n (maybe 1000?) and a small-
ish point-cloud radius r (maybe .001?) and choose n starting points
xk(0) whose components are independent Gaussians mean x(0) and
standard deviation r. For every time T , this defines a point cloud
with n points xk(T). Each frame of the movie should be a 3D scat-
terplot of this point cloud (example here (clickable link)). It will be
more clear if you put the butterfly picture (a long curve produced
by the ODE solver) in the plot. The trajectory is a picture of the
attractor (the set all trajectories approach). The point cloud will
disperse to fill out the attractor. For this to be clear, you have to
figure out how to make the curve that is a single long trajectory not
dominate the figure. For this, make a thin line (set the linewidth to
be smaller) and not as dark (choose a lighter color and change the
parameter that controls opacity of the line).

2D ions in a trap simulation We sometimes denote a point in 2D as r =
(x, y). The inverse square electrostatic repulsion between ions at r1 =
(x1, y1) and r2 = (x2, y2) is

F12 =
r1 − r1

∥r1 − r2∥3
.

More precisely, this is the force on the r1 ion from the r2 ion. The force
on the r2 ion from the r1 ion is the negative of this. The force is in the
direction between r1 and r2 and pushes the ions apart. The magnitude
of the force is proportional to the inverse square of the distance between
them:

∥F12∥ =
1

∥r1 − r2∥2
.

This electrostatic force is a two body force because it depends on the lo-
cation of two ions. There also is the trapping force, which is a one body

3Their ODE solver has a great docstring. Feel free to adopt that style for docstrings in
your code.

6

https://matplotlib.org/stable/gallery/mplot3d/lorenz_attractor.html#sphx-glr-gallery-mplot3d-lorenz-attractor-py
https://matplotlib.org/stable/gallery/mplot3d/scatter3d.html

force toward the center of the trap proportional to the distance from the
center

F1(r1) = −r1 .

If the ions are all on the y axis, these forces are the same as the ones from
Assignment 8. The total force on ion j is the sum of the two body forces
from the other ions and the trapping force:

Ftot,j =
∑
k ̸=j

Fjk + Fj .

Note that Fjk = −Fkj , which means that the ions push each other in the
opposite direction.4

We consider a linear frictional force, which is a force proportional to the
speed of an ion, but in the opposite direction.5 The friction coefficient is
γ:

Ffr = −γṙ .

Putting the forces together, the dynamics are

r̈j = Ftot,j + Ffr = Ftot,j − γṙj . (6)

The potential energy is the 2D version of the potential energy from As-
signment 8

U(r1, · · · , rn) =
n∑

j=1

1
2 ∥rj∥

2
+

∑
j<k

1

∥rj − rk∥
. (7)

As in the 1D version, the force Ftot is the negative of the gradient of the
potential.

Write a function that implements the f(x) in the first order ODE system
formulation of the ODE system (6). The dimension of x is 4n, where n is
the number of ions. The dimension goes from n to 2n because each ion has
two coordinates, then from 2n to 4n when you add “dummy” variables ṙj
to the system. Use the RK4 ODE solver and solver code from Exercise 3.
Make movies to illustrate the results.

1. Verify that if the rj satisfy the dynamics (6) then

d

dt
U(r1(t), · · · , rn(t)) = −γ

n∑
j=1

∥ṙj∥2 .

4In a physics class we would dwell on this point longer. It is one of Newton’s laws of motion
and is related to conservation of momentum total momentum.

5This part is “highly non-physical”. Friction would come from ions moving in air, but there
is no air in an ion trap. The real “cooling” mechanism in ion traps is laser doppler cooling,
which is an idea as subtle and brilliant as the Paul trap itself and also received a Nobel prize.
If there were friction with air as tennis ball would feel, the force would depend on the velocity
in a “highly nonlinear” way because the air flow around a tennis ball is complex and highly
nonlinear.

7

Show that this implies that this implies that U(r(t)) is a decreasing
function of t and that if r(t) → r∗ as t → ∞, then r∗ is a stationary
point for U . Here r = (r1, · · · , rn). Keep in mind (or verify if you’re
not sure) that Ftot = −∇U . Conclude (if you agree) that solving the
ODE (6) is a minimization algorithm that uses the same information
as gradient descent.

2. Make movies showing showing the trajectory of the solution of (6).
Each frame should be a scatterplot of the positions rj(t) at some
t. Experiment with large and small γ, different n (maybe pick just
one n in the end), and initial configurations. Describe the difference
between the behavior of solutions for large and small γ.

3. Fix γ at a reasonably high value, but not so high that the ODE
solution is inaccurate. Choose a large n (more than 100 and pos-
sibly more than 1000) and describe the steady states you get. Pay
attention particularly to the half of the ions nearest the center. A
crystal structure is a regular arrangement of points (atoms or ions).
A triangular lattice is a crystal structure made up of regular triangles
arranged point to point and edge to edge.

4. Parts 1 to 3 have rotation symmetry. Break this symmetry by chang-
ing the trap potential from 1

2

(
x2 + y2

)
to the more realistic anisotropic

(“isotropic” means having rotational symmetry) potential 1
2x

2+3y2.
The form is not important for this. If you replace 3 with a much
larger number, the ions will “want” to be on the x axis. The ion trap
in the link of Assignment 8 is not one dimensional, merely “highly
anisotropic”. This exercise will not work for highly anisotropic traps,
only moderately anisotropic ones. Start with various initial configu-
rations and see whether the eventual steady states (local minimizers)
are the same. If you find good parameter combinations, this will
illustrate the phrase you hear in AI all the time: multiple local min-
ima.

8

