
Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Some coding standards for Assignment 1.

Professionalism and attention to detail are what mathematicians call nec-
essary conditions for creating useful computational software. This class will
treat some issues of software engineering and procedures for creating and veri-
fying computational software. My goal is to convince you that the time spent
(wasted??) doing things “right” will be saved in bugs and confusions avoided
later in the project.

The first assignment will introduce some computational coding standards.
Later assignments will add to these. Some of these apply to all coding in any
language. Some apply mainly to Python and languages like Python. Some
apply mainly to computational software.

Please download the file CodingStandards.py and open it in an editor that
shows line numbers. The code you hand in for assignments should follow each
of the standards below, which are illustrated in this code. You don’t have to
do everything exactly as I do it, but what you do should accomplish the same
thing.

Style. There are style guides for Python that you should be aware of. You don’t
have to follow all those rules exactly, but you should be aware of them.
If you break them, you should have your personal modifications that you
always use. For example, style guides say to indent by 4 spaces. I always
use 3, because 4 spaces make (I feel) too much indenting in code with
many levels of code block nesting. The guides say never to put anything
past column 72, but I violate that rule a little (a few characters more in
a line, and only when he helps a lot).

Header. Lines 1-6 are header lines. They tell you who wrote (with contact
information) the file, what the language is, when it was written, what it’s
for, etc. Modules in larger projects might say what project they’re for,
what the history of the file is, list the names of contributors, say which
version it is, etc. Software management tools such as git have ways to
keep track of some of this information. But in my experience, it also helps
to put it at the top of any module. Please do this in your assignments
even if it seems pointless. Hopefully this is habit forming.

Names and labels. Lines 8 and 9 import standard packages and use standard
names np and plt for their namespaces. Python lets you choose different
names, such as n for numpy, but then others would have trouble reading
your code.

Names. Choose variable and method names that help the reader understand
what it does. Style guides have rules for capitalizing and for using under-
score to separate words. For example, line 11 uses the name BinProb to

1

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

follow the rule that methods have capitol names and words are indicated
by camelcase (starting each word with a capitol). Other people prefer to
not to capitalize and to use underscore, as bin prob. You decide, but stick
to your convention. My personal view is that variables that will be used in
formulas should have names that follow mathematical conventions. Long
variable names lead to formulas that are hard to read and don’t fit in the
72 character limit. For example, line 11 uses p for the probability called
p in mathematical writing, etc. Mathematicians often define q = 1− p, so
line 22 should be easy to understand and remember. If you had instead
used names success probability per trial and number of trials for
p and n, then the variance formula on line 102 would have been

var = number_of_trials*success_probability_per_trial*(1.-success_probability_per_trial)

I think line 102 is more readable as it is.

Docstring. Lines 12 through 20 are a docstring for the method BinProb. A
docstring should say what the method does, what its inputs are and what
it returns. Give the types or type limitations where necessary. A bunch
of comment lines following the def command do almost the same thing
(explain the method), but some code aware editors use the docstring in a
way they could not use comment lines.

Comments. Use comments to explain the choice of variable names and how
a variable will be used. Line 23 has a comment that explains that bp k

should be understood as bp[k] for the current k. Mathematically, the
binary probability distribution probability that k = 0, is Pr(k = 0) = qn.
Lines 43 through 45 have comments that explain the variable name or
explain the formula being used.

String formatting. Lines 60 and 61 are an example of string formatting. The
stuff in curlies {...}) in the string on line 60 is formatting information,
which you can read about in the Python documentation. They have the
form {[name]:[format]}, which means that the object name is bound to
should be formatted (turned into a string) using the [format]] specifica-
tions. Here, the variable p should be formatted using 7.2f and n should
be formatted using 4d. The format 7.2f says to use 7 characters in all
(some of them blank), with 2 being after the decimal point, and using
fixed point format. In this format, 100/3 would be rendered as 33.33 (two
leading blanks and five printed characters, one of them being the decimal
point), and 1/30 would be rendered as .03 (four leading blanks, a decimal
point, two decimal digits). The format 4d says to treat n as an integer
and print it using four characters, using leading blanks as necessary. Line
61 says to use the format method (attribute) of the string outLine with
the p in the string equal to the p in the code (also for n). This results in
the float p being rendered with the 7.2f format, etc. The result is

binomial probabilities with p = 0.23 and n = 20

2

Lines 63 to 69 show the value of this kind of string formatting. Line 63
prints column headers for a table. The k, prob, etc. are spaced so that they
are over the columns that will be printed. The \n at the beginning and
end of the string of line 63 are like typing return. They make blank lines
above and below the k prob Line 65 says to use 4d to render k,
10.2e to render pr, etc. The 10.2e means to use exponential format as
though pr is a float. It says to use 10 characters in all (leading blanks as
needed) then a sign character if needed, then one digit, a decimal point,
and 2 more digits followed by (+- exponent). For example, 100/3 would
be rendered as 3.33e+01, which means 3.33 · 101. This is eight characters
in all, so there would be two leading blanks. Lines 66 through 68 say to to
use format on the string outLine with k given by the code’s k, pr given
by the code’s bp[k], etc. Running this program gives output

k prob CLT prob diff ratio

0 5.37e-03 1.07e-02 -5.32e-03 5.02e-01

1 3.21e-02 3.40e-02 -1.95e-03 9.43e-01

2 9.10e-02 8.16e-02 9.37e-03 1.11e+00

.

.

The numbers line up in columns that are easy to read. They line up
because each number is formatted to the same number of characters. The
exponential format allows for numbers of different sizes. For example, the
first one is 5.37 · 10−3 = .00537.

Reality checks. Lines 71 and 72 are simple reality checks to see that the total
probability is equal to one. It’s important to have such checks, which catch
many bugs. You might not want to leave these lines in the production
version.

Plotting. Lines 84 through 94 illustrate several things you should always do
when plotting. Line 84 returns a tuple containing fig (an instance of the
figure class), and ax (an instance of the axes class). The axes object
holds plots and a figure object holds one or more axes objects, but just
one in this case. Lines 86 and 87 draw lines to plot the binomial and CLT
probabilities. They also give labels for the curves that will go the legend.
Line 89 draws faint grid lines across the plot to make it easier to tell what
the values in the plot are. Line 90 says to put the legend in the plot.
Line 91 creates a plot title using LaTeX formatting (which is that the r

means). The formatted title contains the values of n and p. This way
you can run the code over and over with different n and p values and tell
which plot corresponds to which run. Lines 92 and 93 label the horizontal
and vertical axes, also using LaTeX formatting. Line 94 saves the plot in
a file. You could, instead, make the plot appear on the screen and save
it “manually” (typing a save command in the screen window), but that

3

is cumbersome and takes longer. Automation, even must automatically
saving plots to files, saves a lot of time and avoids mistakes in the long
run.

You will notice that much of the plot LinearScaleWholeRange.pdf is
uninteresting. The whole right half is a flat line at zero. When you see
this kind of thing, you should take the time to plot only the interesting
parts. Lines 98 to 120 plots the same data, but only in a range within
some number of standard deviations of the mean. Plotting uninteresting
lines that don’t convey useful information is a sign of laziness and lack of
interest.

Changing the plot scaling can also reveal information that you cannot see
otherwise. Lines 125 to 135 plot the same probabilities on a log scale so
that you can see how close the numbers are to zero.

4

