
Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html

Event driven simulation

1 Introduction

Event-driven simulation is a way to simulate continuous time random processes
where the state changes only at discrete random times. Rather than moving
forward in small time increments, it jumps from event to event using an event
handler and an event list. The event list is a collection of events that have
been scheduled to happen in the future. The event handler is the part of the
code that processes events as they happen. Handling an event probably means
changing the state of the model and scheduling new future events.

To introduce some notation, at any time the system (or the model) is in some
definite state S(t) ∈ S. There are event times T1 < T2 < · · · . The event times
Tk < t are “in the past”, while times Tk > t are in the future. The state S
changes only at event times. An event is a pair E = (T,A), where T is the time
of the event and A is the action. The action is to change the state and possibly
create one or more new future events E′ = (T ′, A′), with T ′ > T . There are
probability distributions, which depend on S(T ) and A that determine how the
state changes and what new events are created. There is an event list, L(t),
which is a collection of events E = (T,A) with T > t. One step of the event-
driven simulation algorithm is to find the event from the event list with the
smallest T , handle that event and remove it from the event list, then move the
time to that T , and continue in that way.

2 Heap data structure

In Compute Science, heap is a data structure that stores objects that are indexed
by keys. Keys are anything that has a natural order relation, such as numbers
or words (in alphabetical order). We will suppose that the key is a floating point
number, but the same algorithms work with any other ordered set of keys. The
word “heap” in English refers to a disordered pile. You can think of a heap
as having no structure except that you can always throw objects onto a heap
and you always know which object is at the top of the heap. The Wikipedia
page: https://en.wikipedia.org/wiki/Heap_(data_structure) has a clear
explanation of heaps. Any good computer science algorithms book should cover
heaps.

A heap allows two or three basic operations:

• deletemax: Return and remove the (key,object) pair in the heap with
the largest key.

• insert: Put a new (key,object) pair into the heap.

1

https://en.wikipedia.org/wiki/Heap_(data_structure)


• remove: (optional) Remove a specific (key,object) from the heap.

The remove capability is important in many practical uses of heaps but we
describe the heap operations without it. Including remove uses other algo-
rithm/data structure ideas that a person trained in that area would be able to
supply (pointers and/or hash tables, depending on the implementation). The
heap used in event driven simulation typically is upside-down, which means it
has a deletemin operation that removes the object with the smallest key rather
than deletemax.

The heap algorithms (see references) have the property that if there are
n items in the heap, any one of the operations can be done using at most
log2(n) simple operatons. For a heap with n = one million, that is at most
twenty operations for a deletemax or insert. This seems good, but the simple
versions of heap algorithms can result in in irregular and unpredictable pattern
of memory access, which can make them slow in practice. There is fancy high-
performance heap software that works better.

The basic heap data structure is a binary branching tree folded into an array.
In a binary branching tree, each internal node has at most two children. A node
with no children is a leaf. There is a unique node that is not the child of another
node, which is the root of the tree. Each node has a key. The heap-tree is in
heap order if the key of each node is larger than the keys of either of its children.
This implies that the root is the node with the largest key. The deletemax
operation just removes this root. More operations are necessary to re-root this
into a heap/tree.

The keys in the heap are stored in a one index array, A[0], A[1],...,A[n].
The root is A[0]. The children of A[k] are A[2k+1] and A[2k+2]. For example,
the children of A[0] are A[1] and A[2]. The children of A[1] are A[3] and
A[4], etc. If there are n objects in the heap, the tree/heap operations make
sure that each array element from 0 to n-1 contains a tree node (internal or
leaf). This guarantees that the tree is balanced in the sense that the depth of
the tree is at most log2(n) + 1. The clever part of the heap algorithm (see
references) is a way to insert a new element into the heap so that the new tree is
still in heap order and the number of operations (comparisons and exchanges)
is at most the depth of the tree. After a deletemax operation, the root that
was removed is removed by inserting A[n-1] into the smaller tree. This way,
the array gets shorter by one and there is no “hole” where the root used to be.

Most programming languages have heaps integrated, often under the name
priority queue. The Python demo code that goes with these notes uses the
module heapq (presumably for “heap queue”). This simple implementation
seems to lack a remove feature, which means it cannot be used to implement
fancy event-driven simulations.

In event-driven simulation, we typically use a heap with deletemin rather
than deletemax.

2



3 An example

The model involves things (molecules, phone calls, whatever) that arrive inde-
pendently and stay “in the system” a random amount of time. In a time dt
there is a probability λdt that a new thing arrives. Each thing in the system
leaves with probability µdt, with all decisions made independently. This can be
a model of the number of some large molecule in a cell. New copies are created
with rate λ and existing copies decay (disappear) with rate µ. Both λ and µ
are rate parameters for exponential random variables.

For event-driven simulation we need to figure out how to “schedule” future
events when they are generated. Suppose a new thing arrives at time Tk. We
need to schedule it to leave. If it is still in the system at time t > Tk, the
probability to leave in the next dt time interval is µdt. Let S be the random
time it spends in the system. That µdt model implies that S is an exponential
random variable with rate parameter µ. Therefore (as we saw in class), it is
possible to generate a sample of this distribution using

S = − 1

µ
log(U) , U ∼ unif[0, 1] . (1)

The departure time will be Tk + S. Thus, the event handler can schedule the
departure to happen at time Tk +S when it handles the new arrival at time Tk.

The arrivals may be scheduled in a similar way. If an arrival happens at time
T , the next arrival may be scheduled for time T +S, where S is an exponential
random variable with rate parameter λ. A sequence of arrival times separated
by independent exponentials (exponential random variables with a common rate
parameter) is called a Poisson process, or Poisson arrival process.

4 The code

Please download the Python module EventDrivenLimulation.py and open it in
a code editor that shows line numbers. It is an implementation of the simulation
described in Section 3. The following comments are indexed by the line numbers
in the code they refer to.

11. heapq (probably for “heap queue”) is a Python module that implements
the priority queue. It came with my Python installation. If you don’t
have it, you should be able to install it using pip.

15. You instantiate the random number generator at the beginning of the pro-
gram to avoid the mistake of re-instantiating it repeatedly and in that way
repeating the same “random number” sequence more than once. Setting
the seed makes the code give identical results every time you run it. If
you run this one, your graph will be exactly the same as the one posted
as ArrivalDecayProcess.pdf.

20, 21. The formula (1) for generating exponential random variables uses the
inverses of the rate parameters.

3



31 heapify is the name of an algorithm that puts an un-ordered list into heap
order. I was surprised that the eventlist object is not an instance of
some sort of heap class.

34. An event is a Python two element tuple. The first element is the event
time. The second is an object that describes the event. In this simulation,
there are three types of event, called observation, arrival, and decay.
A more complex simulation might call for us to store more information
concerning the event.

35. The operation heappush (for “heap push”) adds the event to the event list.
The terminology comes from the stack data structure. In a stack, there
are operations push and pop. A push adds a new item to the stack and a
pop returns the most recently pushed item and removes it from the stack.
You are supposed to think of a stack of plates, with “push” meaning put
a new plate (object) on top of the stack and “pop” meaning take off the
top plate. This is called LIFO access (Last In First Out). A queue is a
similar collection, but with FIFO (First In First Out) access. In a queue,
new plates go on top and places are removed from the bottom (don’t try
this with breakable dishes!). The authors of this priority queue module
chose to use “push” to mean adding an event to the priority queue and
“pop” to mean deletemin. The “push” and “pop” terminology for stacks
of plates is motivated by spring loaded plate dispensers (rarely seen these
days). You take a plate off the top and the next one pops up. Click here
for an image.

38. This implements the formula (1).

39. You have to put at least one simulation event into the event list or the
event handler will have nothing to do.

42. This is a potential infinite loop. It’s bad programming practice. There
should be some “escape valve” such as quitting when the event count gets
too high. I didn’t put that into this code to keep this code simple.

44. heappop (for “heap pop”) returns the item in the event list with the smallest
t and removes it from the priority queue.

46. break is a keyword that means: exit from the while loop and go to the
command on line 68.

48. The event handler does different things depending on what kind of event is
being handled.

49. n is the number of things in the system. It goes up when there is an arrival.

51 to 53. Schedule this thing to depart. The time to departure is exponential
with rate constant µ and β = 1

µ . Create a tuple with the time t+ S and
event type depart. Push it to the priority queue.

4

https://www.webstaurantstore.com/lakeside-5210-stainless-steel-enclosed-two-stack-non-heated-plate-dispenser-for-9-1-4-to-10-1-8-plates/4805210.html
https://www.webstaurantstore.com/lakeside-5210-stainless-steel-enclosed-two-stack-non-heated-plate-dispenser-for-9-1-4-to-10-1-8-plates/4805210.html


59 and 60. A decay doesn’t create any new events that need to be entered into
the event list.

62 to 64. Record n at this time, for plotting. This is not part of the simulation
but it is convenient to put these times into the event list. Try to think of
a better way to record n(t) at uniformly spaced times.

plot code. Please comment if you think this does not represent good coding
standards or add features that make the plot better. Observe (see the file
ArrivalDecayProcess.pdf) that n(t) has a transient where it goes from
zero to somewhere between 30 and 50, then it fluctuates approximately
around 40. Can you explain why a number around 40 is the long time
average value?

5


	Introduction
	Heap data structure
	An example
	The code

