Jonathan Goodman, February, 2024

Python For Smarties

1 Introduction

These notes are for people who want to know what they’re doing when they code
in Python. The idea is not to do the “for dummies” cookbook approach, but to
explain how Python works to people who want to know. If you understand some
basic principles of the Python language, you can write and read code reliably.
It’s often better, in the long run, that guessing at code from examples that don’t
quite do what you want.

My experience with math grad students who use Python is that they know
specific facts but not the basic principles of Python. Many are unaware of the
basic differences between Python and other interpreted languages such as R,
Matlab, and Julia. These misunderstandings lead to hard-to-find bugs.

Python has many features that go unmentioned here. I want to describe the
principles, not specific details that you get better from reading the documenta-
tion.

There are many online Python resources. I recommend, as much as possible,
using only the official Python documentation and StackOverflow.

2 Environment and the Python Command Line

Python is a scripting language, which means that it interprets then executes
individual commands one at a time. Fach command is executed in the environ-
ment that the interpreter has at that time. Executing the command can change
the environment.

The command line is a simple way to interact with the Python interpreter.
In a terminal windowﬂ On an Apple or Linux computer, you can open a termi-
nal window and type the command that opens the command line interpreter, as
shown in Figure[I] A Python command is a Python expression that the inter-
preter can evaluate. I type the command 2+ (4+5) then “return”. The Python
interpreter “figures out” that the value is 18, which it prints. After printing 18,
the Python interpreter gives me another command prompt.

The environment is, roughly speaking, a collection of names that are bound
to objects. A name is just a character string, such as x or output_file. An
object is a piece of data or a collection of data. It could be as simple as a single
number or something more complex, such as the information needed to access a
computer file. A binding associated to a name, pointer is a term more familiar
to C programmers, “points to” the object the name is bound to. For example,

Hnstructions below suggest various ways to open and enter a terminal window and launch
the Python command line interpreter in it.

[10-16-137-58:~/desktop/notes/PythonForSmarties] jg% python3

Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 26 2018, 23:26:24)

[Clang 6.0 (clang-6@00.8.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

I>>> 2*(4+'5)'
118

>>>

Figure 1: Typing at the command line. In a terminal window on my mac I
type the command python3, which starts the Python interpreter. The >>> at
the bottom is the command prompt. At the Python command prompt I type:
2% (4+5. The interpreter “interprets” this and returns the value 18.

the name x might be bound to an object that contains a single number. Any
name can be bound to any kind of object. For example, the name x could be
bound to a character string.

There may be more than one name bound to the same object. Each object
“knows” the number of names bound to it. This number goes up when another
name is bound to it and goes down when a name bound to it is “re-bound” to
a different object. The only to access an object is through a name bound to it.
Therefore, if the number of names bound to an object goes to zero, the object
can never be accessed. When that happens, the interpreter can garbage collect,
which means re-claiming the memory occupied by the now useless object.

Figure [2] illustrates some of this. The Python command dir() returns
a list of names in the environment (this will be said more correctly later).
When the command line interpreter starts up, it creates some default names:
__annotations__, ---, __spec__. A name is a character string, so the interpreter
prints them out with quotes. The double underscores before and after are a
Python programming convention to indicate to a programmer not to “touch”
them. You could, for example, type the commend >>>__spec__ = 4, but you
should never do that. The command x (typed at the command prompe >>>)
tells the interpreter to return the value in the object the name ’x’ is bound
to. But that name is not defined so the interpreter returns an error message.
The command x=2 tells the interpreter put the name ’x’ into the environment,
create an object whose value is 2, then bind the name to the object. The next
dir() command shows that the environment now contains the name ’x’. The
command x=2 changed the environment. Finally, typing the command x now
gives the value of the object *x’ is bound to, which has the value 2.

Figure [3] illustrates more about the “names bound to objects” system in
Python. Every object has a type, which you can access using the type (name)
function. After the command x=2, the command type(x) returns the infor-
mation that the object ’x’ points to is of the class int. (more about classes
in Python later). The command x = "Hello world" creates a new object of
type str (for string). The object ’x’ used to point to (the number 2) now

[10-16-137-58:~/desktop/notes/PythonForSmarties] jg% python3
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 26 2018, 23:26:24)
[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> dir()
['__annotations__', '__builtins__', '__doc__"', '__loader__', '__name__"', '__package__', '__spec__"']

>>> X
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>> x=2
>>> dir()
['__annotations__"', '__builtins__', '__doc__', '__loader__', '__name__"', '__package__', '__spec__', 'x'l]
>>> X
2

>>> D

Figure 2: Names in the environment. The Python command dir() returns a
list of all the names in the environment. The command x=2 creates the name
x and an object whose value is 2, then it binds the name to the object. See the
text for a more detailed explanation.

has no names bound to it and can be garbage collected. Unlike strongly typed
languages, each assignment can change the type of the object a name points to.
This is a convenience, and also a common source of bugs.

The interpreter infers the type of an object from the command that creates
it. It correctly inferredﬂ that 2 is an integer and “Hello world” is a string.
The command L = [1, "Hello"] creates an object of type list (the square
brackets [...] and the comma separated values say “list”). The elements of a
list can have different types. The assignment command M=L creates a new name,
M but it does not create a new object. Instead, the name M created and bound
to the same object the name L is bound to. The command L.append(3.14)
modifies this object by appending 3.14 to the end of the list object. Both names
M and L point to this object. That’s why, the command M, which returns the
value of the object M is bound to, now gives the three element list. Matlab and
Julia are different: The command M=L in Matlab would create a new object for M
that was given the value contained in the object L is bound to. Thus, changing
an entry in L would not change M.

The last commands of Figure [3| illustrate that this behavior is different for
immutable objects like strings. The command x = "Goodbye world" does not
change the object ’x’ was bound to. Instead, it creates a new object (the
string "Goodbye world" and binds the name x to this new object. The object
y was bound to is not modified. Strings and numbers are immutable but most
other types are mutable. The command L.append(3.14 changes (“mutes” or
“mutates”?) the list object L is bound to, but it does not create a new object.

2The interpreter has rules that determine the type of something whose type is not already
determined. For example, a string of digits is assigned the type int and a string of characters
in quotes is assigned the type str.

[[10-16-137-58:~/desktop/notes/PythonForSmarties] jg% python3
{ Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 26 2018, 23:26:24)

| [Clang 6.0 (clang-600.08.57)] on darwin

‘ Type "help", "copyright", "credits" or "license" for more information.
>>> x = 2

[>>> type(x)

<class 'int'>

|>>> x = "Hello world"

>>> type(x)

l<class 'str's

>>> L = [1, "Hello"]

{[>>> type(L)

| <class 'list's

>>> M =1L
{[>>> L.append(3.14)
>>> L

[1, 'Hello', 3.14]
>>> M

[1, 'Hello', 3.14]
>>> type(L[2])
<class 'float'>

>>> y = X

>>> X = "Goodbye world"
>>>y

‘Hello world'

>>>

L

Figure 3: Re-assigning names, types of objects, immutable and mutable objects.
The Python command type (name) returns the type of the object the name is
bound to. An assignment statement can change this type without changing
the name. A Python list is mutable: such an object can be modified. A
Python “number” (object of type int or float, etc.) is imrmutable: it cannot
be changed, only created accessed, or destroyed.

3 OS Command line and file system

Many readers already know most of the material in this section, and many do
not. Many Python users prefer to use a complete IDE such as Jupyter notebooks
or PyCharm. These have convenient features. But, if you're not a dummy, the
operating system file manager, a code editor, and the command line together is
a more powerful coding environment.

The Python code for doing a task is probably contained in more than one
file, or module. An operating system has a file manager that can be used for
storing code modules, data and output. The command line allows you to copy
and move files, and to move around and look around in the file system. This is
a powerful way to organize and run your computing project.

Most computers have an operating system that either is a form of Microsoft
Windows or Posix. Posiz is a generic term for operating systems that are based
on the Uniz system developed in the 1970’s. An Apple laptop probably runs a
version of MacOS, which is Posix. Hard core hackers may use Linux, which is
even closer to the original Unix.

Both Windows and Posix systems come with window managers that allow
you to open a terminal window in which you can enter commands to the oper-
ating system at the command line. This is the operating system (OS) command
line, not the Python command line discussed in Section Figure [1] has an
example of this. The top line has a prompt that ends Wit% jegh. I typed the
command python3 and then “return” (often called “enter”). This tells the op-
erating system (a version of MacOS in my case) to find the command python3
and execute it. If you or your computer cannot find the command to run the
Python program, you should consult someone who knows a bit more. In Posix
systems, it is likely that the appropriate command is not in your path.

The OS (Windows or Posix) has a file system which is a collection of files
and directories (called folders in MacOS). A directory (folder) is a file that
contains other files, some of which can be other directories. The system of
directories and files in directories it the file system hierarchy. The hierar-
chy starts at a root directory. Any file in the hierarchy has a path from the
root directory. When you open a Posix terminal window, you can enter the
command pwd (for “print working directory”) and it should print the path,
which is a sequence of directory names separated by slashes. For example, I
got /Users/jg/desktop/notes/PythonForSmarties, which means a directory
called Users in the root directory, then a directory called jg in the Users direc-
tory, and so on. The directory Users is a subdirectory of the root directory, and
jg is a subdirectory of Users, and so on. The command 1s (for “list”) prints a
list of files in the current directory. Some of these files could be subdirectories.
The Windows OS has commands with different names that do these things (cd
and dir).

Your OS has commands to create new subdirectories and to move up and
down in the file system hierarchy. You can do these things directly at the com-

3My username on my laptop is jg.

mand line or using your window/file manager. You probably want to create a
new subdirectory for your Python modules and output. The Python interpreter
typically accesses files in the current directory (the one you're in).

4 Modules

A Python script, the technical term is module, is a file that contains a sequence
of commands. The Python interpreter reads the lines of a module and executes
them one by one. Most Python programing involves editing and running mod-
ules. You edit a module using a code editor. I use xcode, but there are others,
each with advantages and disadvantages. You can “run” a module by giving it
as an argument to the Python command.

The Python functions print () and str() can be used to get output when
the interpreter is working on a module. The command print ([string]) prints
the argument string to the terminal. The command str([name]) creates a
string to represent the object that *name’ points to. The operator + “catenates”
two stringsﬁ

Figure [4] shows a Python module open in a code editor (xcode on a mac)
window. The file is called first_demo.py. The filetype .py indicates that it is
a Python module. The first three lines are comments. A comment starts with
the # symbol. The interpreter ignores the # and anything after it. Coders use
comments to help someone reading the module understand it. Good comments
are an essential part of good code (more on this later). The interpreter also
ignores blank lines, such as line 4. Line 5 is a command, which the interpreter
will evaluate just as it would have at the Python command line. This command
creates the name ’greeting’ in the environment, it creates an object which is
the string "Hello world" and binds the name to the object.

Figure [5| shows the execution (“interpretation” would be more correct) of
the module. This takes place in a terminal window. The command python3
first_demo.py finds the commancﬂpythonB and passes it the file first_demo. py.
The interpreter then reads the lines of the file first_demo.py one-by-one and
interprets them much as it would have done at the Python command line as
i Figure 3] Look at Figures [4 and [f] together. Line 6 of Figure [4 tells the
interpreter to print the string that the name ‘greeting’ is bound to. Figure
shows that this resulted in Hello world appearing in the terminal window.
Line 7 creates the name ’x’ and binds it to the value 2 (actually, to an object
with type int and value 2). Line 8 shows one way to print this value. You can’t
print it directly (maybe you can in some forgiving Python systems) because it
isn’t a string. The function str() creates a string to represent the integer 2,
which is the string 2. The function print then prints this string. Lines 9 and
10 illustrate this process. Line 9 creates the name ’x_string’ and binds it to
a string object. Line 10 then “passes” that string object to the print function.

4The correct English word is concatenate, but computer people say catenate instead.
5] renamed the Python 3 command python3 to distinguish it from the earlier python2. You
probably do not need to do this.

® O 4 first_demo.py

Bd first_demo.py
first_demo.py) No Selection

Python 3
First example of a Python module.
Demonstrate using print() and str()

greeting = "Hello world"
print(greeting)
X =2
print(str(x))
Xx_string = str(x)
print(x_string)
| y =4
| 12 print("x is " + str(x) + ", and y is " + str(y))

Figure 4: A Python module open for editing in a code editor. Most code editors
put line numbers on the left and have “code aware” color schemes. This one
makes comments grey, code in black, and strings in red.

Figure [5| shows that you again get 2 in the output. Line 12 creates an output
line that is easy to read (more on this later). It catenates the string ’x is ’
with the string ’2’, which makes the string >x is 2’. Note the space between
’is’ and 2, and the comma after the 2, both of which make the output line
easier to read.

5 Control flow

Control flow is code that tells the computer (the Python interpreter) which lines
of code (commands) to execute (interpret). A code block is a sequence of lines
of code that can be controlled in this way. In Python (and only Python, as
far as I know) a code block is determined by a colon “” and indentation. In
Figure [6] line 8 ends with a colon. That tells the Python interpreter that all
the following lines that are indented are part of a code block. That code block
is lines 9 through 13, because they all are indented. Line 14 is not part of this
code block because it is not indented. Lines 11 through 13 are a nested code
block that is contained in the outer block starting at line 9. Lines 11 through
13 are indented by 6 spaces (marking the nested inner block) while lines 9 and
10 are indented by 3 spaces, indicating that they are in the outer code block
but not the inner one. All lines at the same level (inner or outer in this case)

Law ou aers v ueot LU iw v B I b L L RS v

[10-16-137- 58 ~/desktop/notes/PythonForSmartles] jg% python3 first_demo.py
Hello world

2

2

x is 2, and y is 4

k[10—16—137—58:~/desktop/notes/PythonForSmarties] jo% ||

Figure 5: Execute the module first_demo.py in a terminal window. I issue
the command python3 first_demo.py to the operating system and the output
appears below as the module executes.

must be indented the same number of SpacesEI

Lines 8, 10, 13, and 14 create the control flow for this code. Line 8 creates
a loop out of the code block in lines 9 to 13. The function range(L) returns
a list with elements 0, 1, --- L-1 (more on lists below). The list includes its
starting value, 0, but excludes its ending value, L. This means that there are
L items in the list, but the largest is L — 1. They sometimes call lists like this
half open because they are closed at the left end (starting value) and open on
the right (leave out the ending value). It is a quirk of Python to choose to have
the “right” number of elements in the list at the expense of having the “wrong”
ending value. The Python for loop starts with the keyword for. You say: for
[name] in [1list]: to tell Python to execute the code block that follows with
[name] (n in this example) bound to each object in the list, and in the order
they are in the list. In this example, the code block of lines 9 t0 13 is executed
first with n bound to 0, then bound to 1, and so on. Line 8 says range (n_max+1)
so that it will execute with n equal to n.max. To summarize: a loop is a code
block that is executed many times with one or more variables in the loop taking
different values.

Line 10 of Figure [6]is an if test. The keyword if says: evaluate the logical
expression. If it evaluates to true, then execute the code block that comes after
(note that the line ends with a colon). Otherwise, skip the code block and go to
the next line at this indentation level. In this case, if s > Starget, then execute
the statement print (---. Otherwise (if s < sgarget) skip to the next statement
at this level in the current code block. But there are no more statements at
this level in this code block, so it skips to the end and starts the for loop code
block again with the next value in the range list.

Line 13 of the inner code block in Figure[f]is just the keyword break. That
tells the interpreter to “break” out of the loop in the outer code block (the one
that started at line 9). If the break command is executed, the next line executed
will be line 14. You might wonder why break breaks out of both the inner and
outer code blocks. One reason is that you don’t need a special statement to

6You can indent using tabs instead of spaces. Excellent Python programmers argue with
each other, a lot, about which is better. Personally, I go with spaces. Click on the link to see
a serious discussion of this issue.
https://www.thewrap.com /silicon-valley-fact-check-why-richard-is-wrong-on-tabs-versus-
spaces/| .

https://www.thewrap.com/silicon-valley-fact-check-why-richard-is-wrong-on-tabs-versus-spaces/
https://www.thewrap.com/silicon-valley-fact-check-why-richard-is-wrong-on-tabs-versus-spaces/

Python 3
Illustrate a loop, control flow, and a code block

n_max = 50 # the max number to square
ssq =0 # sum of squares
s_target = 300000 # step when ssq exceeds the target

for n in range(n_max+1):

9 $sg = SSO + h*n # ssq = sum of squares 1 + 4 + ... + n"2
if (ssq > s_target):
print("got ssqg = " + str(ssq) + " with n = " + str(n))
print(" the target was " + str(s_target))
break
if (n == n_max):
print("did not reach target. ssg = " + str(ssg) + " at n_max = " +

str(n_max))
print("increase n_max or go home")

Figure 6: Code to illustrate code blocks and control flow.

[[[JonathansMBP20@:~/desktop/notes/PythonForSmarties] jg% python3 loop_demo. py
got ssq = 31395 with n = 45

1 the target was 30000
[JonathansMBP2@:~/desktop/notes/PythonForSmarties] jg% python3 loop_demo.py
did not reach target. ssq = 42925 at n_max = 50
increase n_max or go home
[JonathansMBP20:~/desktop/notes/PythonForSmarties] jg% [

Figure 7: Run the code in Figure [at the command line, with three different
values of n_max to illustrate conditional execution and branching.

break out of the inner code block, just stop indenting.

Now you can see what the code does. It gives n the values 0, 1, 2,--- and
computes ssq 0, then 1, then 1 4+4 =5, then 5+ 9 = 14, and so on. It keeps
doing this until the range lest is exhausted when n is n_max, or until the sum
of squares is larger than the target.

6 Namespace and importing

The module file system in Python allows you to modularize your code by orga-
nizing different parts of the code into separate files. This kind of modularity is a
basic principle of software design. It allows you to package your code into mod-
ules that others can use and it allows others to do this for you. Commonly used
Python packages (modules) include numpy (scientific and numerical computing),
pandas (for storing and manipulating data), etc.

A namespace is a list of names. The namespace itself is an object that must
have at least one name bound to it. Python uses namespace_name.object_name
to refer to the name object_name in the namespace object that namespace_name

is bound to.

The namespace mechanism in Python helps organize the information one
module learns by importing another module. The command import [file name]
as [name] tells the interpreter to execute the code in the module file name.py.
The file file name.py should contain a sequence of Python commands. The
interpreter executes these commands. Some of these commands create new
names. When the import is finished, the interpreter creates a namespace object
in the calling module’s environment with the name name. All the names created
executing the imported module go there.

Figures [§ and [J] illustrate the import and namespace system. Figure [9]is a
module (file) whose filename is importModuleDemo.py. This file has three com-
mands. Lines 5 and 6 create names greeting and saying. Lines 8 through 12
print the namesE] in the environment. The first lines of output (Figure [10]) have
those names. Line 8 of the imported module importModuleDemo.py (Figure E[)
makes a list of names in the environment created by executing the commands of
importModuleDemo.py. The command on line 5 in namespaceDemo.py (Figure
tells the interpreter to execute the commands in importModuleDemo.py and
to create a namespace id for the names created. The output (Figure [10]) shows
that importModuleDemo.py is executed first, so its output appears before the
output created by later commands in namespaceDemo . py.

The rest of namespaceDemo. py illustrates the namespace mechanism. Line
13 prints the names in the environment after the import (line 5) and the as-
signment (line 7). These are greeting and id. The name greeting appears
both in the environment and in the id namespace. The output from lines 15
and 16 shows that these names are bound to different objects. Line 18 adds a
new name to the id namespace. Line 23 prints names in the id namespace (see
Figure . You find the names greeting and saying that were created in lines
5 and 6 of importModuleDemo.py (Figure E[) The name y was just explained.
The name names was added to the environment of importModuleDemo.py by
line 8 there, and name was created at line 10. People often avoid clutter in mod-
ules used as imports to avoid cluttering the resulting namespace. It’s also bad
form to have the import module make output. The person using the module
may have trouble understanding such output, particularly if the import module
was written by someone else in a different place and time. Lines 25 and 26 of
namespaceDemo . py illustrate that names in a namespace can be re-bound just
as names in the environment can be.

7 Keywords and language aware code editors

A keyword is a character string (word) that has a reserved meaning and cannot
be used as a name. Some keywords have pre-assigned values. For example, the
keyword True always refers to the boolean “true”. A boolean variable can only be
“true” or “false”. A keyword in a command tells the interpreter how to interpret

"The conditional on line 11 avoids printing names such as __spec__ that are automatically
in the environment but which the user is not supposed to access.

10

0 N oUW R =

1"
12
13
14
156
16
17
18
19
20
21
22
23
24
25
26
27

Python 3
Illustrate importing a module and the namespace it makes
filename: namespaceDemo.py

import importModuleDemo as id
greeting = "I say hello"
names = dir()

print("In namespaceDemo.py, the top level names are:")
for name in names:

if (name[0] != '_'): # don't print names starting with underscore
print(" " + name) # print the name indented by three spaces
print("greeting is: " + greeting)
print("id.greeting is: " + id.greeting)
id.y = 5

print("In namespaceDemo.py, the names in id are:")
id_names = dir(id)
for name in id_names:
if (name[0] != '_'):
print(" " + name)

id.greeting = "I forgot"
print("id.greeting is: " + id.greeting)
print("id has type: " + str(type(id)))

Figure 8: Code that imports the module importModuleDemo. py.

Python 3
A demo module to be imported
filename: importModuleDemo.py

greeting = "The module says hello"
saying "learn Python"

names = dir()
print("In importModuleDemo.py, the top level names are|:")
for name in names:
if (name[Q@] != '_"'): # don't print names starting with underscore
print(" " + name) # print the name indented by three spaces

Figure 9: The module being imported in Figure

11

[JonathansMBP20@:~/desktop/notes/PythonForSmarties] jg% python3 namespaceDemo.py
In importModuleDemo.py, the top level names are:
greeting
saying
In namespaceDemo.py, the top level names are:
greeting
id
greeting is: I say hello
id.greeting is: The module says hello
In namespaceDemo.py, the names in id are:
greeting
name
names
saying
Y
id.greeting is: I forgot
id has type: <class 'module'>

....... o L am e -~ SRR | + A &

Figure 10: Output from running namespaceDemo.py (Figure .

the part of the command that comes after the keyword. For example, the
command import numpy as np starts with the keyword import. This tells the
interpreter to look for a file (module) with filename numpy.py and to “import”
it (see Section @ The word as is another keyword, which tells the interpreter
to use the following name as the name of the resulting namespace.

Most programming languages use keywords. A language aware editor usually
has a distinctive color for keywords in the language being edited. Figure [f]shows
that xcode uses magenta for keywords in Python. This shows that for and in
in line 8 and break in line 13 are keywords. Language aware editors try to help
the programmer in other ways. Figure [6] shows that default code is in black.
Character strings are red, numbers are blue and comments are gray. Line 12
in Figure [4] shows how this can be helpful. If the end quote after the string
x is were missing, the part + str(x) would be red, showing it’s part of the
string, rather than black. Fancier language aware editors try to be even more
helpful. Some will raise a popup box. if your mouse hovers over a name, telling
you something about that name. Experienced coders usually develop a strong
preferences for a specific code editor or set of code editor features. You should
try a few to see which ones are most helpful to you.

A common mistake is using a keyword as a name by mistake. For example,
suppose there is an index ¢ that depends on other indices k and n in formulas
with expressions i and i,. It might be natural to code these using names ik
and in.

ik = 4 # fine
in =9 # error, "in" is a keyword.

You can do a web search to find the keywords in the version of Python you are
using.

12

8 Defining functions

Most programming languages have a notion of function (also called method or
procedure or subroutine). The function mechanism is supposed to provide two
services. It should allow you to create code once that to do something and then
apply that code repeatedly in different situations. It also should allow you to
apply the operation on different pieces of data with different names.

A function is defined by a block of code starting with the def keyword. What
follows is the name of the function, its arguments, a colon, then an indented
code block that defines the function. The code in the function definition is
executed by the interpreter every time the function is called (invoked). The
environment for this execution is a modification of the environment that exists
when the function is called.

9 Data Structures

A data structure, in programming, is a systematic way to store data. A good
data structure lets you add, remove, and access data in the structure in the sim-
plest way possible for the specific application. Python has native data structures
that coders use all the time. Here are a few of them and a few of their features.
The Python documentation has more information.

9.1 List

A list is a sequence of objects, which you might think of as [Og,- -+, Opn_1].
A list has a name. You access object k by putting [k] after the name. For
example, if the name friends is bound to a list, then friends[3] is bound to
Os; in that list (the fourth object in the list). A list object is mutable, which
means a command can modify an existing list.

The objects in a list do not have to have the same type. For example,
rlist = [3, "tummy", ["a", "z"]] is a list with three objects. The first is
an integer. The second is a string. The third is a list. Good coders would not
use this feature very often. I mention it mainly to emphasize the simplicity: a
list is just a list of objects. Each object has its own type information, as all
Python objects to.

List is a built-in datatype in Python that comes with many operations. some
important ones are

e [] is an empty list. The command friends = [] binds the name friends
to an object that is a list with no elements.

e append is an attribute of any list objectc that adds an object to the end
of a list. For example, if friends is the list ["David", "Mark"], then the
command friends.append("Danny") changes (mutates? mutes?) the
object to ["David", "Mark", "Danny"]

13

e In this example, friends[2] is bound to "Danny". You can treat friends[2]
as a name, which can be bound to another object. For for example,
friends[2] = "Daniel" changes the list to ["David", "Mark", "Daniel"].

e A for loop can “iterate” over the objects in the list. For example, writing
for person in friemds: executes the code block (the next lines prop-
erly indented) with the name person bound to each object in friends.
For example, the code

friends = []

friends.append("David")

friends.append("Mark")

for person in friends:
print (person)

print("Some of my friends")

produces the output

David
Mark
Some of my friends

e len is a function that returns the number the number of elements in
its argument. For example, len(friends) would be 2 before appending
"Danny" and 3 after.

The Python documentation has many more attributes of list objects.

9.2 Tuple

A tuple is a list of names bound to objects. Some differences between tuples
and lists are

e A tuple is not mutable. A tuple object cannot be modified once it’s cre-
ated. For example, you can add to a list as in friends.append ("Danny")
but not a tuple.

e Tuples use parentheses (round braces, parens) instead of square braces.
Thus tup = (1,2,3) makes a tuple while 1is = [1,2,3] makes a list.

e A one element tuple needs a comma to tell the interpreter it’s not just
an object in parens. Thus obj = (2) creates an integer whose value is 2,
while tup = (2,) creates a one element tuple.

e The parentheses are optional. Thus, tup = 1,2,3 creates a three element
tuple. Style guides tell you to use the parens, but some of the Python
code you read doesn’t follow this rule.

14

9.3 Unpacking

Putting data items into a data structure is packing. Unpacking is binding names
to the data items in a structure. For example, 1is = [1,2] creates a list data
structure with two data items. Then [one, two]l= 1lis binds the name one to
the data item 1 and the name two to the object 2.

Methods can return more than one object by packing and unpacking into and
out of a tuple. For example, imagine a method intersection that determines
where two lines in the plane cross. It can return the x and y coordinates using
a tuple, as

return (x,y)

The object returned is a two element tuple. The calling code can receive these
values using

(x,y) = intersection(... some data ...)
As another example, you can create plots using the plot package

import matplotlib.pyplot as plt
. lots of code ...
fig,ax = plt.subplots()
. code for plotting ..

The fig,ax on the left unpacks the two element tuple returned by plt.subplots().
The style guide says it should be (fig, ax) = ..., but whoever wrote this
line of code (copied from the official matplotlib documentation, actually) did
not follow the style guide.

9.4 Dictionary

A dictionary is a collection of names bound to objects. It acts like a list except
that objects are accessed by name rather than by number. Python uses curly
braces (curlys) {} for dictionaries. If glossary is a dictionary and name is a
string, then glossary[name] is bound to an object. Lists work like this, except
that the index of a list is an integer rather than a string. In this example,
the first line creates a dictionary object (which is empty) and binds the name
glossary to it. The next three lines modify the dictionary object by adding
new entries. The “index” (a string instead of a number) goes in square braces.
The last line shows that you can access an item in the dictionary by name.

glossary = {} # a dictionary with no entries
glossary["geek"] = "A person who likes coding"
glossary["nerd"] = "A person who likes math"
glossary["snob"] = "A person who hates cheap restaurants"

print(glossary["geek"]) # get: A person who likes coding

15

The dictionary data structure is a Python implementation of what algo-
rithms people call a hash table, or associative array. A hash table uses an
actual array such as a Python list together with a hash function. In Python dic-
tionaries, the hash function takes a string and produces an integer that can be
used as an array index. It is possible that two strings “hash” to the same index
(the has function gives the same integer output for distinct strings). This is a
collision. A hashing system needs a way to resolve collisions (which must hap-
pen sometimes). A book on computer algorithms will describe several collision
resolution strategies. I don’t know which one Python uses.

You can iterate over the entries in a dictionary

for key in glossary:
print(key + " means: " + glossarylkey])

The name key will be bound to each of the keys in the dictionary. Each key is
a string, so you get

geek means: A person who likes coding
nerd means: A person who likes math
snob means: A person who hates cheap restaurants

The “definition” does not have to be a string and different definitions don’t
have to have the same type. Figure [L1]illustrates some of these features. Line 6
creates an empty dictionary. Lines 7 through 9 add entries. The "name" entry is
a string. The "age" entry is an integer (and I don’t know whether Roger Federer
is 48 years old). The "big wins" entry is a list. Line 11 shows that you can
define a dictionary all at once. The syntax involves curlys (like all dictionaries),
with a list of pairs separated by commas. Each pair has the form name:value.
Again, the values have different types. Line 13 creates a list with two objects
in it, each object being a dictionary. Line 14 starts a standard for loop, in
which star will be bound to the objects in the dictionary one by one. Line
15 accesses two entries in each dictionary. Note that the key is always a string
while the value can have any type. The last part is a little Python exercise.
First, star["big wins"] produces the list of big wins (each star, obviously has
more big wins than these). You access the first element of the "big wins" list
with [0]. Using parentheses, as (star["big wins"]), says to apply the [0]
to that list. These parens are not necessary, but I hope they make the code
clearer.

A dictionary is a way to bind names to objects. The key of a dictionary
entry is the name and the value is the object. That is also what a namelist
does. In fact, namelists are implemented using dictionaries. In particular, a
value of an entry in a dictionary could be another dictionary, just as a name in
a namelist can be bound to another namelist.

9.5 Numpy arrays

Numpy (for numerical Python) is a module that defines mathematical constants
(such as np.pi ~), functions (such as np.sqrt(x) ~ /z) and data structures

16

roger = {}

roger["name"] = "Roger Federer"

roger["age"] = 48

9 roger["big wins"] = ["US Open", "Austrailian Open"]

® N o

1 serena = {"name":"Serena Williams", "age":42, "big winsP:[“Wimbledon“, "French Open"1}
12

15 tennisGreats = [roger, serenal

14 for star in tennisGreats:

15 print(star["name"] + " won " + (star["big wins"1)[01)

Roger Federer won US Open
\Serena Williams won Wimbledon

Figure 11: Creating and working with a dictionary.

such as arrays and matrices. The Numpy documentation describes these in
detail. The ndarray (for n dimensional array) data structure is much like an
array in Java or Fortran and not like a Python list. For example,

A = np.zeros([2,3], np.float64)

creates an object of type <class ’numpy.ndarray’> (a numpy ndarray). The
first argument is the two element list [2,3], which is the shape of the array. In
this case, A will by a two index array with two rows and three columns. The
second argument is a type for the entries of this array. Here, np.float64 is a
type defined in numpy (so it’s in the np namespace) that is a 64 bit float. The
64 bit float is the default for numbers in numpy arrays, so A = np.zeros([2,3]
does the same thing.

Figure [12] illustrates some features of the numpy array class. Line 6 creates
a one index array with 4 elements. It specifies that these elements are 32 bit
integers. Line 7 makes the second entry equal to the integer 4. Printing (line
8) shows that there are four entries, three zeros and one 4. Line 9 creates a
new object, which is an array but now with the default type np.float64. Line
10 tries to assign x[1] to the integer 4. The output shows that this did not
happen. Numpy knows the entries of this x are floats, so the integer 4 is first
converted to the float 4., the decimal point indicating that it’s a float. The zeros
also are 0. (indicating the floating point zero) rather than 0 (the integer zero.
The two lines of out are at the bottom of Figure Line 10 assigns x[1] the
integer value 4. If x were a list rather than a numpy array, the value of x[1]
would have become 4 (the int) rather than 4. (the float).

You should use numpy arrays rather than lists for one index arrays in nu-
merical calculations. Some reasons are:

e Performance: operations on arrays are faster because

— Arrays are more “light weight”. Every array element has the same
size and type so they can be arranged more systematically in com-
puter memory (less work needed to find them) and the type does not
need to be looked up for each operation.

17

— Operations can be vectorized.

Performance is a more important issue in Python than in many other
languages because Python is interpreted rather than compiled. Most of
the time in executing the command x = y+z is spent figuring out what
the command is. That means reading the characters, deciding which are
names and which are operations, what types the variables have, where
they are in memory, etc. The actual addition takes less than 1% of that
time. In many cases code written in Python can execute almost as fast
as code written in high performance languages (C, Fortran, etc.), but you
have to avoid “scalar” code. Python’s integrated linear algebra methods
are (for large problems) fast. Vectorized code can use single commands to
do a lot of arithmetic.

e There are many numpy methods that take numpy arrays as arguments
or produce arrays as output. Simple examples include vector dot product
and matrix vector multiplication. The methods in Python that do these
things are much much faster than methods you would write yourself.

T

6 x = np.zeros([4], np.int32)
7 x[11 = 4

8 print(str(x))

9 x = np.zeros(4)

0 x[11 =4

1

print(str(x))

[0 40 ol
[0. 4. 0. 0.1

Figure 12: Illustrating some aspects of Numpy arrays.
10 Classes

Classes in most programming languages are a way for the coder to define a new
kind of object, a data type, and give it properties for some specific purpose. A
data type is defined by what it can do and the kind of data it holds. The built-
in data types in Python include various kinds of numbers strings and container
classes (lists, dictionaries, etc.). A class is a programmer-defined data type. An
object whose data type is that class is an instance of the class. For example,
financial software might have a Transaction clas{f| whose instances describe
financial transactions.

The class mechanism in Python is well described in the |Python documen-
tatiorﬂ It is simple and “lightweight”. This simplicity allows a lot of freedom

8The Style Guide says names of classes should be capitalized, as in Transaction rather
than transaction. See https://peps.python.org/pep-0008/#class-names.
9 https://docs.python.org/3/tutorial /classes.html

18

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://peps.python.org/pep-0008/#class-names
https://docs.python.org/3/tutorial/classes.html

in defining and modifying class objects. Instead of protections offered by, say,
C++, it is up to the class class designer and user to follow coding guidelines
and not to do things that are forbidden in other languages. For example, C++
allows a class instance to have private data that cannot be accessed by code
outside the class. Instead of that, Python style guides say a name you don’t
want accessed from the outside should start with an underscore character. For
example the name _rank in a class is intended to be private while rank is not.
Suppose Transaction is a class, then the command

sale = Transaction(price, date, customer)

creates an object whose type Transaction. The constructor code (see below)
for the class will do something with the input data price, etc. There will be
a namespace associated to this object. Names in that namespace are attributes
of the object. For example, there might be a method customer_type() that
returns information about the customer. The command

is_happy = sale.customer_type("mood")

might return True if the customer of that particular transaction is happy.
Part of executing this command is “asking” the object sale for an attribute
customer_type that is a function. The interpreter doesn’t know or care what the
type or class of sale is. It only needs the sale object to have a customer_type
attribute.

Figure Figure [13]illustrates how a class can be defined and used. In line 6,
class is a keyword that says the command is defining a class. The name of
the class is poly (for “polynomial”). The colon says that indented lines 7 to 19
define the class. The names defined in these commands become attributes of
any instance of the poly class.

Line 7 defines a method object called@ _init__. This is the constructor,
which is called whenever a new instance of the class is created. Line 46 creates
an object of the class poly and binds the name p to it. You can think of
poly(a) (the right side of line 46) as a call to the method™| __init__ in the
poly class definition (starting on line 7). The constructor “constructs” the
new class instance. In a more complicated class, the constructor might ask for
memory or open a file, record the existence of the new instance in a database,
etc.

10The underscore characters before and after init are a warning that you should never
call __init__ yourself. If you create a class that has an attribute you don’t want anyone to
use (except you), you put one or two underscore character before its name. For example, if
you want each instance to have a unique serial number that never changes, you can call it
_serialNumber. If car is an instance of this class, the command car._serialNumber=0 would
set _serialNumber to zero. Python programmers have to promise never to do this, even though
they can. The Python interpreter calls __init__ whenever you create a new instance of the
class, but you should not call __init__ yourself.

1 The full story is a little more complicated because there are initialization/constructor
actions involved besides those in the __init__ definition.

19

Notice that the call on line 46 has only one argument, a, while the __init__
method definition on line 7 has two arguments, self and a. The self argu-
menﬂ is a namespace that holds names bound to data that a class instance
needs to “remember”. This makes a class instance a good place to store infor-
mation. Lines 8 stores the given coefficient array a in the self namespace. The
constructor also computes and stores the degree of the polynomial (lines 9 and
10). About line 9: the shape attribute of (the numpy ndarray) a is a tuple that
contains the dimensions of the array. In this case a has only one index and only
one dimension. The left side “unpacks” this tuple into a name dp1 (for “degree
plus one”). Line 10 creates the name deg in the self namespace and binds it
to the degree of p. This illustrates the idea that a constructor can do more than
just store arguments in the self namespace.

Line 11 creates a function f that is an attribute of any instance of the class
poly. The first argument is the self namespace, which is where __init__ put
the polynomial coefficients. In Line 47, p.f refers to the f attribute of the
object p. This attribute is a function that takes one argument, when it is called
from the “outside” like this. The interpreter adds the self argument before
executing the function definition in lines 12 to 19. Lines 12 and 13 unpack data
stored in self. The rest evaluates and returns the value of p(x) at the given x.

The integrate function called on lines 58 and 61 illustrate how this class
mechanism can be used. The code calculates (estimates) the integral using a
version of the trapezoid rule from calculus.

-1 b—a

b n
I= / f(z)dzr =~ Z flzp)Ax , Az = ;o wp=(k+3)Az. (1)
a k

n
=0

The last argument to the integrate method defined on line 36 is £. The object
passed as f is supposed to have an attribute (also called £, which is common
in Python code). This attribute, £.£ is assumed to be a function that returns
a value for any argument x. Line 41 uses f.f(xk) to get the value of f(xy)
that is used in the integration formula . The Python interpreter does not
ask what type the object passed as f is. Indeed, lines 59 and 61 pass objects of
two different types, poly for line 58 and es for line 61. When executing line 41,
Python will ask the object that the name f points to for its attribute £. The
poly class defines such an attribute starting on line 11. The es class defines its
f attribute starting on line 27. Both of these definitions use the data stored in
the self namelist. When this code is executed, self will be the namelist for
the instance passed to integrate, either p (line 58) or cosh (line 61). It also
has a value of x passed from line 41.

This is a common pattern in numerical software. There is a computational
method for learning something about a function, its integral in this case. This
method needs to know what function it is working on. The user needs a way
to specify the target function to the computational routine (integrate in this
example). It does this by passing an object that “knows” the function. In this

12The name self is a convention. An evil Python coder could give it another name.

20

case, “knowing” f means being able to evaluate f(z) for any z. The object
passed has to have an attribute £ that appears to integrate to be a function
of one variable x. The class mechanism with its self namespace allows the
function to know the rest of the data that defines it. The integrate function
does not know how f is defined. Indeed, the two functions are defined in two
ways. One is a polynomial
f(z)=ag+ a1z + - +aqz? .

The other is an exponential sum

f(z) = cheaw .
k=1

The data needed to define these functions is different. A polynomial requires a
single array for the coefficients ax. An exponential sum requires one array for
the exponential rates a; and another for the amplitude coefficients cg.

The specific polynomial in this case is

p(x) =1+ 22 + 322 + 423
The exact integral is (dust off your calculus book)

1
/ (1+2x+3x2+4$3)da:=4.
0

The exponential sum is the hyperbolic cosine defined by

x —x
cosh(z) = ete”
2
The integral being calculated is
! 1
/ cosh(z)dr =€ — o= 2.350402- - - . (2)
—1

The output from this code is in Figure The first two lines of output test
that the f attributes of the polynomial and the exponential sum give the right
function values. The numerical approximation to the integral of the polynomial
is 3.9925, which is close to the exact answer 4. The numerical approximation of
the cosh integral is 2.35036 - - -, which is close to the exact answer .

21

1 # Python 3

2 # Illustrate a loop, control flow, and a code block

4 import numpy as np

5

6 class poly: # polynomial: a[@] + al1ll#x + .. + aldlxx*d
7 def __init__(self, a):

8 self.a = a

9 (dp1,) = a.shape

10 self.deg = dpl - 1

11 def f(self,x):

12 a = self.a

13 deg = self.deg

14 f = alel

15 xk = 1. # will be x"k

16 for k in range(1, (deg+1)):

17 xk = xkxk

18 f = f + alkl*xk

19 return f

20

21 class es: # exponential sum: c[@lxe”{al[@lxx} + ..
22 def __init__(self, a,c):

23 self.a = a

24 self.c = ¢

25 (n,) = a.shape

26 self.n = n

27 def f(self,x):

28 a = self.a

29 c = self.c

30 n = self.n

3N f=0.

32 for k in range(n):

33 f=Ff + clkl*np.exp(alkl*x)

34 return f

35

36 def integrate(a,b,n,f): # integrate f from a to b using n points
37 dx = (b-a)/n

38 int = @.

39 for k in range(n):

40 xk = a + (k+.5)*dx

41 int = int + dx*f.f(xk)

42 return int

43

IAA deg = 3

45 a = np.linspace(1., 4., deg+l) |# get a = [1,2,3,4]
46 p = poly(a) # p(x) = 1+2x+3x*2+4x"3
47 print("polynomial at x=2 is " + str(p.f(2))) # get 1+2x2+3%4+4%x8 = 49
48

49 a = np.zeros(2)

50 ale] = -1.

51 al1] = 1.

52 ¢ = np.zeros(2)

53 cle] = .5

54 cl1] = .5

55 cosh = es(a,c)

56 print("cosh.f(.5) is " + str(cosh.f(.5)))

57

58 ip = integrate(e., 1., 18, p)

59 print("the integral of the polyno%%%l is " 4+ str(ip))

60

61 ic = integrate(-1., 1., 100, cosh)

62 print("the integral of the hyperbolic cosine is " + str(ic))

)

Figure 13: A module that illustrates some basics of classes in Python There are
no comments of docstrings because everything is explained in the text. Real
code would have comments and docstings.

[10—17—15—126:~/desktob/notes/P;EhonForSmarties] jg% python3 classDemo.py

polynomial at x=2 is 49.0

cosh.f(.5) is 1.1276259652063807

the integral of the polynomial is 3.9925000000000006

the integral of the hyperbolic cosine is 2.350363214371499

Figure 14: The output from the code in Figure [I3]

23

	Introduction
	Environment and the Python Command Line
	OS Command line and file system
	Modules
	Control flow
	Namespace and importing
	Keywords and language aware code editors
	Defining functions
	Data Structures
	List
	Tuple
	Unpacking
	Dictionary
	Numpy arrays

	Classes

