Scientific Computing, Fall 2024
http://www.math.nyu.edu/faculty /goodman/teaching/SciComp2024/index.html

Three ways to report failure

Computational functions often fail. When one does, it must report failure in
some way. To misquote a book and movie about the Apollo 13 almost disaster
(clickable link): Failure is inevitable, but silent failure is not an option. A
function that can fail should report that failure and the calling code should look
for the report and handle it in some way.

The Python code exceptionDemo.py posted with Assignment 9 explains
three ways this can be done. The task in the demo is computing y = /2. This
fails only if x < 0. The code for computing /x should return /z if x > 0.
Otherwise, it should communicate to the calling code that it could not compute
vz. The calling code should look for the report and handle the error in some
way. In this case, it either prints \/z, or, if < 0, prints something saying it
did not compute /z.

In more realistic situations, the error/failure could be that a data file does
not exist or has the wrong format (two different kinds of failure). An iterative
algorithm like gradient descent could have iterates that fail to converge. A
function may receive arguments that are not feasible or violate some constraints,
such as +/z with x < 0. A matrix factorization could fail to exist, such as
Cholesky, H = LL”, when H has negative eigenvalues.

The first method is illustrated in the function myRootNaN defined starting
on line 16. The IEEE floating point standard says that the square root function
should return NaN if the argument is negative. The numpy function isnan() re-
turns True if its argument is NaN and False otherwise. The function myRootNan
is called on line 44 and line 45 tests whether it was successful by checking
whether it got NaN or not. This is the simplest approach to the x < 0 problem,
but it has the drawback that Python doesn’t like making NaN values, so it prints
a warning that this has happened. The warning might seem harmless, but it
interferes with the carefully formatted output. You would not want your boss
to see the warning; it looks unprofessional.

The second approach is illustrated in the function myRootNone defined start-
ing on line 23. This avoids generating a NaN by not calling np.sqrt(x) if x < 0.
If z < 0, the function returns None, which is the Python keyword for the “null
object”, an object with no content. In this case, binds y to a float if z > 0 and
binds y to the null object otherwise. Line 56 determines whether the function
failed by testing whether or not y has been bound to the null object. This
approach is better than the first one because it avoids the NaN warning in the
output.

The third approach is the one professionals prefer, as you can confirm by
doing a web search on: python error handling best practices. The func-
tion myRootExcept (starting on line 34) raises an e:cceptionﬂ The keyword try

1 This would be called throwing an exception that the calling code should catch in C++


http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2024/index.html
https://en.wikipedia.org/wiki/Failure_is_not_an_option
https://en.wikipedia.org/wiki/Failure_is_not_an_option

tells Python to look for an exception. The keyword except tells Python to test
whether an exception was raised. The code in that block (lines 69 and 70) says
what to do if the exception was raised. The else branch (lines 72 and 73) says
what to do if the exception was not raised. The finally keyword starts a block
of code to be executed whether or not the exception was raised.

In Python, an exception is an instance of an exception class. An exception
class is any class that is a derived class from the base class Exceptionﬂ You can
read about base and derived classes in the Python documentation: |Section 9.5,
Inheritance (clickable link). Line 31 defines NegativeArgument as the name of
a derived class from the base class Exception. The derived class inherits (has)
all the variable and function definitions in the base class. This means that the
new derived class NegativeArgument can do anything the base class Exception
can do, which is everything that it needs to do to be a Python exception. The
documentation (a bit cryptic at first) gives a long list for specialists, see [Section
9.5, Inheritance (clickable link). Everything in the constructor of the base class
is inherited by the derived class. If you don’t need the derived class to do
anything the base class can’t do, you can just end the derived class definition
with pass, which is line 32.

The keyword raise on line 36 calls the constructor for the NegativeArgument
class to instantiate (create) an object of that class. This explains the parens
after NegativeArgument. This class instance does not get a name, but the
exception handler, which is part of the Python interpreter, keeps a pointer to
it. The keyword try on line 66 tells the interpreter to execute the indented
code block with the exception handler turned on. The keyword except on line
68 asks the exception handler for any exceptions it might have. Remember,
an exception is an instance of a class that is derived from the Exception class.
The NegativeArgument on line 68 asks the exception handler for any exceptions
that are instances of that classE| If there are any, the interpreter executes lines
69 and 70. If there are none, the interpreter executes lines 72 and 73. Either
way, it executes the finally code block, which is line 75.

There is more to exception handling than just this. There is a mechanism
for the exception instance to have information about why the exception was
raised and communicate this to the exception handler.

or Java. The equivalent of lines 66 to 75 would be called a try catch block.

2Python convention is that the name of a class starts with a capital letter.

3If line 68 has just been except: (not naming the specific exception class you’re looking
for), that would have been a naked exception handler. Python documentation tells you not
to do this, because other functions might have raised other exceptions not related to what
you’re doing here.


https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

