
Scientific Computing, Fall 2025
https://math.nyu.edu/∼goodman/teaching/ScientificComputing2025/ScientificComputing.html

Assignment 1

1. A condition number example. Consider the function

f(x) = ex − 1 .

(a) Show that the problem of computing f(x) is well conditioned uni-
formly for x near zero. This means, for example, that κ(x) ≤ C
whenever |x| ≤ 1, and that C is a reasonable number (maybe 2 or
10, but not 106). It also means that κ(x) is bounded as x → 0. If
you’re not a pure math nerd, it just means that it should be possible
to compute f(x) without losing more than one digit of accuracy when
x is close to zero.

(b) Consider the algorithm

f = np.exp(x) - 1.

Show that this algorithm is unstable for small x in the sense that
the relative error in computing f(x) “blows up” (the answer is 100%
wrong) if x is close enough to zero.

2. A quirk of floating point. One member of the logistic map family is

u(x) = 4(x− x2)

The logistic map recurrence is the iteration xn+1 = u(xn) It maps the unit
interval to itself, which means that if 0 ≤ xn ≤ 1 then 0 ≤ xn+1 ≤ 1. If
is a model of “chaos” in that if x0 and y0 are very close, then xn quickly
separates from yn as n increases. It is a 2 to 1 map in that the interval
[0, 1

2] is mapped to [0, 1] and [12 , 1] is mapped to the same interval, but
backwards. Another map with these properties is the baker’s map, which
is

v(x) =

{
2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 ≤ x ≤ 1

The name comes from kneading bread, in which it is first stretched and
then folded over. The two maps have similar graphs and properties, except
that the graph of u is smooth at x = 1

2 while v(x) is pointed there.
Explain the following behavior: If you code the baker’s map in simple
Python floating point and iterate (xn+1 = v(xn)) then no matter what
x0 you take, eventually (after less than 100 steps), you get xn = 0 for all
subsequent n. The mathematical iteration does not do this, nor does the
logistic map.

1

https://math.nyu.edu/~goodman/teaching/ScientificComputing2025/ScientificComputing.html

3. Coding and analysis.

This exercise explores a simple but unstable algorithm for solving a two
point boundary value problem. The problem is to find numbers x1, · · · , xn−1,
assuming boundary conditions x0 = 0 and xn = 0. The indices k = 0 and
k = n are the two boundary points, and the corresponding conditions
x0 = 0 and xn = 0 are the boundary values or boundary conditions. The
recurrence relation is

xk+1 − 3xk + xk−1 = fk . (1)

The numbers fk are the right hand side or inhomogeneous term in the
recurrence. The corresponding homogeneous recurrence relation is (1) with
fk = 0 for all k. The relation (1) is supposed to apply for k = 1, 2, · · · ,
n−1. The boundary values are implicitly used in the k = 1 and k = n−1
equations. For example, since x0 = 0, the k = 1 equation is

x2 − 3x1 = f1 .

There are fast and accurate methods for solving this two point boundary
value problem, which we will see in a few weeks. The purpose of this
exercise is to illustrate a algorithm that is equally fast, but unstable and
inaccurate except for very small n.

This bad algorithms is called shooting. The name is based on the image
that you start with the left boundary value x0 = 0 and “shoot” to “hit”
the other boundary condition xn = 0. The method uses two sequences uk

and vk, constructed as follows. The uk sequence takes u0 = 0 and u1 = 0,
and then uses the recurrence

uk+1 − 3uk + uk−1 = fk

to compute u2, u3, etc. This sequence is u2 = f1, then u3 = 3u2+ f2, and
so on. It is unlikely that un = 0, so this sequence does not satisfy the right
(k = n) boundary condition. The vk sequence starts with v0 = 0, v1 = 1,
then (using the same recurrence relation), v2 = f1 +3, v3 = f2 +3v2 − v1,
etc. The “shooting” trick is to look for our solution sequence as a linear
combination of these two computed ones:

xk = uk + avk . (2)

We then see the correct value of the parameter a.

(a) Show that the x sequence defined by (2) satisfies the recurrence
relation formulas (1) for all k > 0.

(b) Find a formula for the parameter a in terms of un and vn.

(c) Show that the homogeneous recurrence relation (the one with fk = 0
for all k) has only one solution, which is xk = 0 for all k. Warning:
It is clear that xk = 0 for all k is a solution. The point is to show

2

it’s the only solution (which mathematicians call uniqueness). Hint:
You only need to show that x1 = 0 (why), which can be done by con-
tradiction. If x1 ̸= 0, then x2 ̸= 0 too (why?), and so on. Warning:
showing x2 is probably not zero is not the same thing as showing it’s
definitely not zero.

Write a Python function in a module to implement this shooting algo-
rithm. The function should take as inputs the number n and a one index
numpy array of (double precision) floats f = [f1, · · · , fn−1]. Be careful
with the coding because Python arrays usually start with k = 0 rather
than k = 1. A simple way around this is to declare f to have length n but
never assess f0. The function should return the solution as a numpy array
x = [x1, · · · , xn−1].

Test that your routine works by giving it a problem you know the answer
to. For that, take

xk = sin

(
πk

n

)
.

You can use the recurrence (1) to find the corresponding fk (hint: do this
numerically using the simple formula (1) rather than some trigonometric
identies). Your function will take this f and return a computed array x̂.
If this were done in exact arithmetic (i.e., mathematically), you would get
x̂ = x. The result in floating point will have a mean error (average error
per value)

En =
1

n
∥x̂− x∥1 =

1

n

n−1∑
k=1

|x̂k − xk| .

Note that the important distinction between relative and absolute error
is not so important here because the exact answer is on the order of one.
This error should be on the order of (double precision) roundoff for small
n and grow as n increases. Print En for a few chosen n values (some small,
some medium, etc.) to check this.

Finally, the “picture worth a thousand words” is a semi-log plot of En as
a function of n for n in a range ranging from small (where the error is
order roundoff) to larger (but not much larger) so that the computed x̂
is completely wrong. That is, create a loop that finds the numbers En

for n = Nmin to n = Nmax and makes the semi-log plot. You should
experiment with the code to get a good n = Nmax. Hand in your one best
picture.

(d) What is the shape of this error curve in a semi-log plot? If the curve
were exactly that shape, what would it say about En as a function
of n?

4. Recurrence relations, not to hand in Write a Python function that
takes as inputs x0, x1, a, and b, and n and returns xn. It should define

3

xn using the recurrence relation

xk+1 = axk + bxk−1 .

The characteristic polynomial of this is

p(z) = z2 − az − b .

Choose values of a and b so that p has two real roots z+ > z1. Write
another function that takes as inputs x0, x1, z+ and z− and returns c+
and c− so that

x0 = c+ + c−

x1 = c+z+ + c−z−

Check that this software products numbers that satisfy

xn = c+z
n
+ + c−z

n
− .

Of course, this relation will be only approximately true for the computed
numbers because of roundoff. Print the error e = xn −

(
c+z

n
+ + c−z

n
−
)
to

see that it’s on the order of roundoff. Try a few coefficient sets, possibly
including Fibonacci (a = b = 1) and a = 3, b = −1 from above. Don’t
take n too big.

Choose parameters with |z+| > |z−|. Consider the approximation that
includes only the faster growing mode:

xn ≈ c+z
n
+ .

See in computed results that the relative error of this approximation goes
to zero as n → ∞. For Fibonacci, this happens pretty fast. Use this to
explain what was said in class, that

xn+1

xn
→ z+ as n → ∞ .

Again, you don’t have to take n very large for this behavior to be clear.
It should be true for other a and b too.

4

