
Scientific Computing, Fall 2025
https://math.nyu.edu/∼goodman/teaching/ScientificComputing2025/ScientificComputing.html

Assignment 5

Note: All matrix calculations in this assignment (multiplications, additions,
eigenvaluee and singular value decomposition) should use the appropriate numpy
functions.
An interesting matrix. This L×L matrix depends on two positive parameters
ru and rd. The matrix is tri-diagonal with rd on the sub-diagonal, ru on the
super-diagonal, diagonal entries that make the row sums equal to zero, and all
other entries equal to zero.

R =



−ru ru 0 · · · 0

rd −(ru + rd) ru
. . .

...

0 rd
. . .

. . . 0
...

. . .
. . . −(ru + rd) ru

0 · · · 0 rd −rd


. (1)

The matrix describes a random “hopping” process in which a “walker” makes
random “hops” from one “site” to a neighboring site. There are L sites, labeled
1, 2, · · · , L. At time t, the walker is at site1 X(t). The probability thatX(t) = k
is

pk(t) = Pr(X(t) = k) .

The random process involves k → k + 1 and k → k − 1 transitions. The
k = tok+1 transitions are “up hops” and the k → k− 1 ones are “down hops”.
Up hops from k = L are not allowed, nor are down hops from k = 1. Up
hops happen at random times with rate parameter ru. This means that the
probability of an up hop in a small interval of time of length dt is equal to ru dt.
The probability of a down hop is rd dt. The probability of some hop (either up
or down) is (ru + rd) dt. In this derivation, we assume that these probabilities
are so small that we may neglect the possibility that there is more than one hop
in the dt time interval.

The occupation probabilities pk(t) satisfy a system of differential equations
derived using reasoning involving conditional probability. We denote conditional
probability using the symbol “|”, so Pr(A|B) is the probability of A conditional
on B. This is the probability that A happens if you already know that B
happened. Conditional probabilities satisfy Bayes’ rule, which is

Pr(both A and B) = Pr(A|B) Pr(B) .

1It is common to denote random quantities with capitol letters and possible values of a
random variable with lower case letters. If k ∈ {1, 2, · · · , L} is one of the sites, then is is
possible that X(t) = k.

1

https://math.nyu.edu/~goodman/teaching/ScientificComputing2025/ScientificComputing.html

You can think of this as intuitive, but in theoretical probability is taken as the
definition of conditional probability.

We also need the law of total probability. Suppose B1, B2, and B3 are three
“disjoint” events (only one of them can occur) that “cover” all possibilities (one
of them must happen), then if A happens, it happens with one of the events
B1, B2, or B3. The total probability of A is the sum of the three “partial”
probabilities

Pr(A) = Pr(A and B1) + Pr(A and B2) + Pr(A and B3)

= Pr(A|B1) Pr(B1) + Pr(A|B1) Pr(B1) + Pr(A|B1) Pr(B1) .

For the evolution of the occupation probabilities pk(t), we use the events

A = {X(t+ dt) = k}
B1 = {X(t) = k − 1}
B2 = {X(t) = k}
B3 = {X(t) = k + 1}

The three B events cover all possibilities for A because only one hop can happen
in time dt, and because hops only go to neighbors. The law of total probability
in this case becomes

Pr(X(t+ dt) = k) = Pr(X(t+ dt) = k | X(t) = k − 1) · Pr(X(t) = k − 1)

+ Pr(X(t+ dt) = k | X(t) = k + 1) · Pr(X(t) = k + 1)

+ Pr(X(t+ dt) = k | X(t) = k) · Pr(X(t) = k)

The hopping rate model is expressed technically as formulas for the conditional
probabilities on the right. For example, a k−1 → k transition is an up hop and
has probability ru dt:

Pr(X(t+ dt) = k | X(t) = k − 1) = ru dt

Pr(X(t+ dt) = k | X(t) = k + 1) = rd dt

Pr(X(t+ dt) = k | X(t) = k) = 1− (ru + rd) dt

The last probability above is the probability not to hop, which is one minus the
probability to hop, and the hop may be either up or down. These probability
formulas have to be modified a little if k = 1 (no down hops) or k = L (no up
hops). With some algebra, this leads to

pk(t+ dt)− pk(t)

dt
= ru pk−1(t)− (ru + rd) pk(t) + rd pk+1(t) . (2)

The left side of this is d
dtpk(t).

The occupation probabilities may be organized into a row vector

p(t) =
(
p1(t) p2(t) · · · pL(t)

)
.

2

You can check that the system of differential equations (2) may be formulated
as a vector/matrix differential equation involving the transition rate matrix R
from (1):

d

dt
p(t) = p(t)R . (3)

This rate matrix (or any continuous time Markov transition rate matrix) is
singular because the row sums are equal to zero. In matrix/vector form, this
may be expressed using the vector of all ones:

R 1 = R


1
1
...
1

 = 0 .

This corresponds to conservation of total probability (using associativity of ma-
trix/vector multiplication)

d

dt

L∑
k=1

pk(t) =
d

dt
p(t)1 = (pR)1 = p(R1) = 0 .

You can get a non-singular rate matrix by allowing down hops from k = 1. This
corresponds to the model in which a walker can hop down from k = 1, but if
it does then it is lost from the system. The rate matrix for this is S, which is
equal to R except that the (1,1) entry is −(ru+rd), which allows for down hops
to oblivion. The sum of the probabilities then can decrease in time, as

d

dt

L∑
k=1

pk(t) = −rd p1(t) .

1. Condition number for inversion.

Recall that for functions with a single input and output, the condition
number is the relative change in the output divided by the relative change
in the input, with the understanding that the change in the input is very
small. In notation, let x be an input number, f a function, and ẋ a small
change in x (which was called ∆x in earlier classes). The condition number
is

κ(x) =

ḟ(x)
f(x)

ẋ
x

. (4)

A first derivative approximation is

ḟ(x) = f ′(x) ẋ .

This puts the condition number formula in the possibly more familiar form

κ(x) = f ′(x)
x

f(x)
. (5)

3

You can verify that the scalar condition number κ of (5) is dimensionless,
i.e., a “pure number”.

It is common (but not always correct) to define the condition number of
matrix and vector operations using norms and worst case relative sen-
sitivities. If A is a matrix and f(A) is a matrix function of A (such as
f(A) = A2 or f(A) = A−1, or f(A) = eA), the condition number is defined
as (4) but with the worst case perturbation Ȧ. The perturbation ḟ(A) is
given by matrix perturbation theory, which depends on which function f
is being used.

κf (A) = max
Ȧ̸=0

∥ḟ(A)∥
∥f(A)∥

∥Ȧ∥
∥A∥

(6)

The perturbation formula is

˙(A−1) = −A−1ȦA−1 .

Show that, for any matrix norm (writing κ for the condition number of
the inverse matrix computation),

κ(A) ≤
∥∥A−1

∥∥ ∥A∥ . (7)

An inequality is called sharp (a somewhat vague term) if it the best pos-
sible inequality of a certain form. For example, “sharp” might mean that
an inequality u(x) ≤ v(x) for all x has some x with u(x) = v(x). Show
that the condition number inequality (7) is sharp in the matrix 2 norm.
Hint. One step might be to show that the right side of (7) is σ1(A)/σn(A)
(the largest and smallest singular values of A).

2. Singular value perturbation theory.

Work out first order perturbation theory for singular values for the case
where singular values are distinct. If σ1(A) > σ)2(A) > · · · are the
singular values of A, and vj and uj are corresponding normalized right
and left singular vectors, find a formula

σ̇k =??(something involving Ȧ, and the singular vectors)?? .

Hint. The formula looks like first order perturbation formulas for eigen-
values.

Do computations to show that (using your formula for σ̇j and the com-
puted SVD of A)

σj(A+ sȦ) = σj(A) + sσ̇j + cs2 +O(s3) as s → 0 .

The code can be something like the order of accuracy checks from an earlier
assignment using a sequence s, 1

2s,
1
4s, · · · , and showing that ∆σj − sσ̇j

4

is order s2 as s → 0. The code should be set up to take as input matrices
A and Ȧ of whatever size and shape. One test case might be

A =

1 1 0
0 1 1
0 0 1

 , Ȧ =

1 0 0
1 1 0
0 1 1


Try another non-trivial example also.

3. Matrix exponential.

If A is a square matrix, the matrix exponential is defined by the power
series of matrices

eA =

∞∑
n=0

1

n!
An . (8)

This is a matrix analogue of the Taylor series for the ordinary exponential

ea =

∞∑
n=0

an

n!
.

The ordinary exponential has the property that eaeb = ea+b. The corre-
sponding matrix exponential formula is not true if matrices A and B do
not commute

eA eB ̸= e(A+B) , probably, if AB ̸= BA .

The following restricted version is useful in many applications:

etA esA = e(t+s)A . (9)

The matrices being exponentiated, which are tA and sA, do commute.

(a) Write a functions that computes and returns the sum (8) using a fixed
number of terms (maybe 100, but not “hard wired”). This function
will be slow, but it is a source of “ground truth” to test the fancier
algorithms that follow.

(b) Show that

e∆tA = I +∆tA+
∆t2

2
A2 + · · ·+ ∆tp

p!
Ap +O(∆tp+1) .

For part (d), we denote the order p approximation by

Ep = I + · · ·+ ∆tp

p!
Ap .

Hint. You can factor ∆tp+1 out of the rest of the terms in the sum.

5

(c) Suppose n is a power of 2, which means n = 2k for some integer
k. Find an algorithm to compute Bn (B being a square matrix)
using log2(n) matrix multiplications. Extra credit, time permitting.
Find an algorithm to compute Bn using at most 2 log2(n) matrix
multiplies. Hint. Express n in in base 2, which means n = d0+2d1+
22d2 + · · · , where the “digits” have dj = 0 or dj = 1. Use this to

express Bn as a product of matrices B2j .

(d) Choose n large and ∆t = 1/n small. We know A = ∆tA+ · · ·+∆tA
(n terms) so

eA =
(
e∆tA

)n
.

Demonstrate numerically in some of the matrices (1) that the approx-
imation of part (b) gives an order p approximation to the exponential.

eA = En
p +O(∆tp) .

Hints. Use the slow but “exact” (in exact arithmetic, with large
enough n) method of part (a) for the “ground truth” on the left. Use
the fast algorithm of part (c) to evaluate the right side. It suffices
to take n as a power of 2. A simple and good way to measure the
size of a matrix, without computing the SVD or doing some other
optimization, is to use the Frobenius norm

∥B∥F =

∑
jk

B2
jk

 1
2

. (10)

This in not the matrix norm derived from the vector 2-norm, but you
can think of it as the vector 2-norm applied to the matrix B. The
matrix norm that comes from a vector norm is

∥B∥ = max
∥v∥=1

∥Bv∥ .

Any norm like that has ∥I∥ = 1. But the Frobenius norm has ∥I∥F =√
d for the d×d identity matrix. You can code the Frobenius formula

(10) in Python/numpy using a vectorized square operation applied to
the elements of B and the np.sum function (it really is simpler than
other norms). Explanation. We saw in panel method integration that
local truncation error of order p+ 1 leads to global error of order p.
The global error was one order larger because it is the accumulated
result of many local errors. This is true here too, but the analysis
is more complicated because the global error is not just the sum of
the local errors. We will come back to this point when we discuss
simulation methods for differential equations.

(e) Show that the matrix exponential is a way to express the solution
matrix/vector differential equations, which may involve a time de-

6

pendent column vector or row vector or matrix

d

dt
x(t) = Ax(t) (11)

d

dt
p(t) = p(t)A (12)

d

dt
S(t) = AS(t) (13)

d

dt
S(t) = S(t)A . (14)

To do this, show that if the fundamental solution is given by the
formula

S(t) = etA

then S satisfies S(0) = I and the differential equations (13) and
(14). Conclude that the solutions of (11) and (12) are given by
x(t) = S(t)x(0) and p(t) = S(t)p(0) respectively. Hint. Put tA into
(8) and differentiate term by term with respect to t.

(f) Optional, not to hand in even if you do it. The sum formula for
ordinary exponentials may be understood (among other ways) using
Taylor series, written out and multiplied

eaeb =

(
1 + a+

1

2
a2 +

1

6
a3 + · · ·

)(
1 + b+

1

2
b2 +

1

6
b3 + · · ·

)
= 1 + a+ b+

1

2
a2 + ab+

1

2
b2 +

1

6
a3 +

1

2
a2b+

1

2
ab2 +

1

6
b3 + · · ·

= 1 + (a+ b) +
1

2
(a+ b)

2
+

1

6
(a+ b)

3
+ · · ·

= ea+b .

Show that this calculation does not work for eAeB if AB ̸= BA but
does work for etAesA.

4. Ill conditioned eigenvalue problem. Let P = R−1ΛR be the eigen-
value/eigenvector decomposition of the matrix P from (1). For this exer-
cise, we call that matrix A and write the eigenvalue/eigenvector decom-
position as A = R−1ΛR. The matrix A is symmetric when ru = rd and
the eigenvalue problem is well conditioned. When ru ̸= rd the matrix is
not symmetric and the eigenvalue/eigenvector decomposition can be ill
conditioned. It is a theorem that the (exact) eigenvalues and eigenvectors
of A are real and distinct for any choice of ru and rd, but the computed
eigenvalues and eigenvectors may have significant imaginary parts.

(a) Made scatterplots (visualization of eigenvalues as points in the com-
plex plane) of the computed eigenvalues of A for ru = 2rd and various
values of L. They should be very close to real for small L but not

7

for larger L. Choose two or three scatterplots to upload that show
this. Large imaginary parts show that the computed eigenvalues are
far from the true ones.

(b) The condition number of R is large when L is large. Demonstrate
this by plotting the condition number

κ(R) = σmax(R)/σmin(R)

as a function of L. If you make a semi-log plot, you should see
(in an important L range) a linear graph that shows that κ grows
exponentially with L. This is approximate for large L so small L
values may deviate from the line. Large L values may “saturate” in
floating point because it is hard for a computed condition number to
be much larger than 1/ϵmach.

5. An unstable algorithm. A computational algorithm is unstable if it
gives inaccurate results for a well conditioned problem. If the problem
itself is ill conditioned, no algorithm should be accurate. The problem of
finding the matrix exponential seems well conditioned, judging from the
fact that the two algorithms of Exercise 3 give quite similar results. This
can be confirmed by theory (omitted). An algorithm may be unstable
because it uses the solution of an ill-conditioned sub-problem.

(a) Show that if A = R−1ΛR, then

eA = R−1eΛR .

Show that eΛ (as given by the power series (8)) is equal to the diag-
onal matrix with eλj on the diagonal. The exponential of a diagonal
matrix is diagonal. The exponentials of similar matrices are similar
by the same transformation.

(b) Write a function that uses the eigenvalue/eigenvector decomposition
of the matrix (1) to compute its exponential. Compute the difference
(in the Frobenius norm) between this result and results from the
algorithms of Exercise 3. The results should be good if ru ≈ rd or if
L is not large. The result should be bad otherwise.

8

