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Assignment 6

1. Rejection sampling of Gamma.

The gamma distribution is the PDF
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It is common to write this asﬂ f(t) < tP~te~t. The constant of propor-
tionality here is written & (because the usual + is used elsewhere in this
exercise). The normalizing constant I" insures that the integral is equal to
1, which gives

I =T(p) :/ tP= et dt .
0

This is the Fuler gamma function, which is used in parts of pure math.
You can see (using repeated integration by parts) that if p is an integer,
then I'(p) = (p — 1), so T'(1) = 1, T'(2) = 1, I'(3) = 2, etc. You may
use the Python scipy function scipy.special.gamma to evaluate I'(p).
Rejection sampling from the proposal distribution g(t) = Ae™** leads to

1
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Here, Z is the overall acceptance probability and A(T') is the acceptance
probability for a proposaﬂ T ~ g(t) = de .

(a) (All the formulas, and ¢t > 0 always). First, find a formula for A(t)
in terms of ¢, Z, T', and p. Second, find the ¢, that maximizes A(t).
Third, find the value of Z that makes A(t.) = 1, which is the largest
acceptance probability possible for this A and p. Fourth, find the A,
as a function of p that maximizes Z (the overall acceptance proba-
bility). Fifth, as a reality check, (verify and) explain why A, — 1
and Z(A,) — 1 as p — 1. Sixth (extra credit, attempt only when ev-
erything else is done and you're still interested) explain why A, — 0
and Z — 0 as p — oo. Remark. The algorithm is correct for any
A € (0,1), in the sense that the random variables T' produced have
the target gamma distribution. It is most efficient when A = A,.

IThe symbol & means “is proportional to”.
2The symbol ~ means “from the probability density”. In this case, the PDF of the random
variable T is g(t).
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(b) Write a Python function (pick another name if you want)

g-samp( lam, p, rng) that returns one sample of the gamma distri-
bution using rejection. Print an error message if there are more than
max_trials rejected proposals. Take max_trials to be pretty large
(maybe a thousand or even ten thousand). Use n (a large number)
samples and the histogram method to estimate the PDF they come
from. Make a plot with the estimated and target density. Plot the
target density (the formula (T))) as a line and the estimated densities
at the bin centers as dots. Choose n and At (the bin size) so that
the estimated and target densities are similar but the dots are not
exactly on the curve. The histogram plot should start at ¢ = 0 and
go out to a tmax where the probability is small. Make a plot with
a moderate p and a larger p. Pay attention to the efficiency, which
should be low for large p. You will experience inefficiency (small Z) if
the code takes a long time to run. (Extra credit) Have g_samp return
a tuple ( T, n_trials) where n_trials is the number of proposals
needed to get the accepted sample T'. Use this to test whether the
actual efficiency is close to Z.

(c¢) If you plot the gamma density for large p, you will see that it looks ap-
proximately Gaussian. It might be more convincing to plot log(f(¢))
and see that it is nearly quadratic except in the tails where the density
is very small. This suggests using a Gaussian proposal distribution.
Explain why this can’t work, at least not in this simple form. Hint.
Compare the Gaussian tails to the exponential or gamma tails.
Histogram hints

e Write a function hist( X, a, b, n) that makes n equal sized
bins between a and b and returns an integer numpy array con-
taining the bin counts.

e You can find the k with X; € By, by finding the integer part (the
floor of (X;—a)/Az. Before you do Blk] = B[k]+1, test whether
k is in the range 0,1,--- ,n — 1. If not, then X; is outside the
range of the histogram. The sum of the bin counts is less than
n if there are samples X}, outside the histogram range.

e Convert bin counts to density estimates as described in class.

e Debug your histogram function by giving it samples from a known
distribution, for example the exponential distribution. That way,
if your density estimates for part (b) don’t match the target
gamma density, you will know the part (b) code is to blame, not
the histogram code.

2. Box/ball rejection is bad.

A multi-variate random variable X € R? is uniformly distributed in a set
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As usual, Z is a normalizing constant chosen so that

1
/Rd fl@)de = ZVOI(A) =1.

In this formula, vol(A) is the volume of A, which a generic word for the
size of a set. The ”volume” of A is its length if d = 1, its area if d = 2, its
3D volume if d = 3, and so on. The volume is assumed to be finite and
not zero. Warning. Parts (a), (b), and (c) may seem easy because they
are easy. The challenge is to figure out how to say the reasons correctly
using the concepts involved.

(a) Suppose U a univariate random variable uniformly distributed in the
interval A = [0,1]. Show that V = 2U — 1 is uniformly distributed
in the interval A = [—1,1].

(b) Show that if V;, V5, -+ -, are univariate and uniformly distributed in
the interval [—1, 1], then the d component variable V = (Vq,--- , V)
is uniformly distributed in the boxE| Q, which is the set

z=(r1, - ,zq) €ER? with —1 <z, <1 fork=1,---,d.

(¢) Suppose that B C A. Consider the rejection sampler for a uniform
random variable in B that proposes X uniform in A and accepts if
X € B. Show that this sampler is correct in that the first accepted
X is uniformly distributed in B.

(d) The box/ball sampler is a rejection sampler that finds X uniformly
distributed in the unit ball by rejection from a sample uniformly
distributed in Q. Let Z(d) be the acceptance probability as a function
of d. Write a code to implement the box/ball sampler in d dimensions,
with d as an argument to the function that does the sampling and
returns Z, which is the estimate of Z. For example, it could look like

def bb_samp(n, d, rng):
"""return an estimate of Z using n samples in d dimensions
. more docstring info
nnn
. the code
return Z_hat

Make a semi-log plot of (the estimated) Z as a function of d for d in
a range where the estimates are at least somewhat reliable. What do
you conclude about the behavior of Z for moderate to large d and
how (speculation) is this related to the curse of dimensionality? You
may have to use larger n with larger d to get a reliable Z. Repeat
the experiment some number of times (maybe 3 or 5 or even 10) and

3Boxes may be called Q instead of B so that B can be a ball. “Q” is for “quadrat”, which
is German for square. If d # 2, we could talk about a d dimensional “square”.



put all the results in the same plot. For this, plot points rather than
curves. The result will be several points over each d value, which will
give you more idea how accurate the estimates are.



