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Assignment 7

1. Brownian bridge and control variates.

The Brownian bridge is a probability distribution involving d components
x = (x1, · · · , xd). It is convenient to invent two “ghost” components
x0 = 0 and xd+1 = 0. The “energy” of a Brownian bridge is

U(x) =
1

2

d∑
k=0

(xk+1 − xk)
2
.

The k = 0 term in this sum is x2
1 because x0 = 0 and the k = d term is

x2
d. The boundary conditions x0 = xd+1 = 0 “tie” the Brownian “path”

to zero at its ends. The path is a “bridge” starting and ending at zero.

The Gibbs Boltzmann1 distribution for this energy function is a multi-
variate joint PDF given by

f(x) =
1

Z
e−U(x) .

Typically, the energy function is known but the normalization constant Z
is unknown. The Gibbs Boltzmann distribution for any energy function
makes “states” (vectors x) with low energy more likely than states with
higher energy. However, there may be more high energy than low energy
states. Therefore, even though an individual high energy state have less
probability, there are so many more of them that the expected energy
may be high. This is a subtle tradeoff physicists are still struggling with
in specific models today.

We want to know

P (d) = Pr(Xk > 0 , for all k = 1, · · · , d ) .

This can be expressed as

P (d) =
1

Z

∫ ∞

x1=0

· · ·
∫ ∞

xd=0

e−U(x1,··· ,xd) dx1 · · · dxd .

This formula isn’t useful for find the value of P (d) because Z is not known
and because evaluating high dimensional (d > 4, say) integrals by quadra-
ture is impractical. Instead, we will estimate P (d) using Monte Carlo
sampling of the Gibbs Boltzmann distribution.

1W. Gibbs and L. Boltzann were physicists from around 1900 who contributed to the field
now called statistical mechanics. This involves, among other things, using probability models
to describe the behavior of systems of atoms or molecules that seem to move “at random”
That means modeling the mechanics (F = ma) of these systems using statisticsl (probability)
methods.
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(a) Find the symmetric (precision) matrix H so that U(x) = 1
2x

THx.

(b) Write Python code that (1) calls the appropriate numpy routines to
accomplish the following tasks:

• Create H and calculate the Cholesky factor L so that LLT = H

• Given L and z ∈ Rd finds x so that Lx = z. Note that this is
equivalent to x = L−1z.

• Generates an d component Z ∼ N (0, I) and the corresponding
Brownian bridge path X = L−1Z.

• Generates n independent Brownian bridge pathsX1, · · ·Xn. This
should create L only once but use it n times with n independent
vectors Z1, · · · , Zn.

(c) Verify that the algorithm of part (b) generates paths (samples) X
whose PDF is the Gibbs Boltzmann distribution with this quadratic
energy function. Hint. One way to do this is to use the general fact
that the covariance matrix Σ is the inverse of the precision matrix
H, and the Cholesky factorization of Σ involves L−1.

(d) Suppose H is any symmetric and positive definite matrix and

X ∼ 1

Z
e−

1
2x

THx .

Show that the covariance matrix of X is

Σ = E
[
XXT

]
= H−1 .

[This should come before part (c), but the Cholesky factorization is
a good tool for solving this, along with the multi-variate change of
variables in the integral x = L−1z, dx = det(L)dz.

(e) Let Y (X) be the indicator function saying whether X satisfies the
constraints Xk > 0 for all k. That is

Y =

{
1 if Xk > 0 for all k

0 otherwise

Let Yj be the indicator for path Xj ∈ Rd. Use the samples Xj and
the estimator

P̂ (d) =
1

n

n∑
j=1

Yj =
1

n
#{Xj with Y(Xj) = 1 } .

(f) Write code to find the one standard deviation error bar for P̂ (d) using

the data from part (e). Make a plot showing P̂ (d) as a dot and the
error bar as a vertical bar for each dot for d values as large as the
estimator gives any information for the number of samples practical
for you (think of runs taking a few hours once the code is ready).
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(g) Theory and experience suggest that P (d) behaves like a power of d
for large d. That means P (d) ≈ Cd−β for some exponent β. Try to
see whether there is a power law relation for large d and, if possible,
estimate β. One way to do this is to make a log/log plot, where
power lines become straight lines and the slope is the power. If you
do this, include the error bars as vertical lines in the log variable. You
will see that the error bars are larger when P is smaller, indicating
that it is hard (inaccurate) to estimate the probability of rare events
(Y (X) = 1 is rare). This will be frustrating because you will want to
increase d to see the power, but those estimates require large sample
size to be accurate.

(h) Use the method of control variates to improve the accuracy of the
basic estimator of P . For a control variate, take a linear function of
the path X, such as

W(X) =

d∑
j=1

Xj .

You know that E(W ) = 0 because the probability distribution is
symmetric. You suspect that W is correlated with Y because paths
that have Y =! (always positive) probably have large positive path
sums W . See how much variance reduction you can get this way.
Does it make the computations of part (g) more accurate?

(i) (time permitting, extra credit, possibly thankless) Experiment with
other linear control variates such as

W(X) =

d∑
j=1

ajXj .

They all have mean value zero. It might be that weighting (large aj)
only near the ends is a better control variate because a path that
never touches x ≤ 0 has to start and end by going in the positive
direction.

(j) Plot a few (three or four at most) paths with Y = 1 for the largest d
where you can find them. It might be that looking at these will help
you design a good control variate.

2. Importance sampling.

Let X ∼ N (0, 1) be a standard normal. Write code to estimate the even
power moments for s = 1, 2, · · · .

µs = E
[
X2s

]
.

Use the standard estimator

µ̂s =
1

n

n∑
j=1

X2s
j .
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(a) Show that µ2 = 3, µ3 = 5 ·3, · · · , µs = (2s − 1)(2s − 3) · · · . Hint.
This may be done using integration by parts, using x4 = x3 ·x, etc.,
as we did in class for the variance. Clearly, µs is very large when s
is large.

(b) Make a plot (as a function of s for practical s values) with error bars
of

µ̂s

µs
.

Make sure to scale the error bars with µs also, This should show that
the relative accuracy of µ̂s gets worse for large s. Here “large” s
could be as small as s = 4.

(c) µs is given by the integral formula

µs =
1√
2π

∫ ∞

−∞
x2se−

1
2x

2

dx .

Make a figure with the integrand (normalized by its maximum value)

and the PDF part e−
1
2x

2

on the same plot. This should show (if
you choose s large but not too large) that most of the “mass” of
the integral is over parts of the x axis that have low probability.
Thus, most of the samples X ∼ N (0, 1) contribute only slightly to
the actual answer (which is large). This explains why even a large
number of samples can give an inaccurate estimate of µs.

(d) Experiment with an importance sampling strategy using the stretched
distribution g = N (0, σ2) for σ > 1. Write the PDF for g and the
likelihood ratio

L(x, σ) =
f(x)

g(x, σ)
.

Estimate µs using (together with samples Xj ∼ g)

µs = Eg

[
L(X,σ)X2s

]
.

Make a plot of the error bar size as a function of σ and some s > 1
to see that an s > 1 can reduce the variance.

(e) Playing around a (possibly long) while, it is possible to see that the
most effective σ is σ ≈

√
2s. Use this to see what s values you can

estimate µs for. The relative error still grows with s, but slower than
before.
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