
Scientific Computing, Fall 2025
https://math.nyu.edu/∼goodman/teaching/ScientificComputing2025/Scie ntificComputing.html

Assignment 8

1. KDE in various dimensions.

Kernel density estimation means estimating a probability density from a
collection of samples and an estimation kernel. To be specific (though this
is not necessary) choose the basic smoothing kernel to be

ϕ(x) =
1

(2π)
d
d

e−
1
2∥x∥

2
2 .

Suppose f(x) is a smooth probability density in d dimensions and that Xj

for j = 1, · · · , n is a collection of independent samples of f . The density
estimate is

f̂(x) =
1

n

n∑
j=1

ϕϵ(x−Xj) .

The lengthscale ϵ smoother is

ϕϵ(x) =
1

ϵd
ϕ(1ϵx) .

The value of density estimate f̂(x) is random because it depends on the
random samples Xj . Denote the expected value of the density estimator
by

f(x) = E
[
f̃(x)

]
.

(a) Show that if f is smooth, then the bias of the KDE satisfies

f(x)− f(x) = O(ϵ2) .

(b) Show that the variance of the KDE satisfies (for small ϵ)

var(f̃(x)) ≈ C

ϵp n
.

Find the exponent p, which depends on n.

(c) The total error of any estimator is the sum of the bias and the statis-
tical error. Suppose that the statistical error is equal to the standard
deviation of the estimator. Suppose that ϵ = n−α and find the ex-
ponent α that minimizes the total error (has the best power of n).
What is that power of n? What does that say about the accuracy of
KDE estimation if d is not small?

1

https://math.nyu.edu/~goodman/teaching/ScientificComputing2025/ScientificComputing.html

2. KDE experiment.

Use the Brownian bridge code form Assignment 7, but change notation so
the number of components is L and the Brownian bridge components are
Uj for 1 ≤ j ≤ L. The PDF for U = (U1, · · · , UL) is the same

p(u) =
1

Z
e−

1
2 (u

2
1+···+u2

L)

Create n independent samples of the pair (X,Y), where

X =

L∑
j=1

Uj

Y = max
1≤j≤L

Uj

We want to estimate and visualize the PDF f(x, y) using kernel density
estimation. Hints:

• Make a color contour plot of the estimated density f̂(x, y). Do this

by evaluating f̂ on a uniform grid to create an array of values to pass
to the plot routine.

• Rescale x and y before doing the density estimate. That means,
choose length scales λx and λy and replace Xj by Xj/λx and Yj

by Yj/λy. One way would be to use the standard deviation of the
samples Xj and Yj . Another way would be to use the range of values,
such as maxXj −minXj .

• If you want to understand the importance of scaling, try L = 100
without scaling. The range of X will be different from the range of
Y , so isotropic smoothing with the isotropic Gaussian will not work
well.

• Experiment with various n (number of samples) and ϵ (smoothing
length) relations to see which work well.

• You can debug you code by taking (X,Y) to be from a bivariate
Gaussian with σ2

X ̸= σ2
Y and σXY = 0 (the covariance). The contour

lines should be elliptical. If you scale using standard deviation, the
contour lines should be circular.

• As always, you will lose points unless you make some comments on
the results. What did you learn from this?

3. The Runge phenomenon.

Write a function that takes as input n interpolation points and values
x = (x1 · · · , xn) and values f1, · · · , xn) and returns a tuple of two objects,
the first being an array of the polynomial coefficients a = (a0, · · · , an−1)
with f(x) = a0 + a1x + · · · an−1x

n−1 having f(xj) = fj for j = 1, · · · , n.

2

The second item in the tuple should be the condition number of the
Vandermonde matrix

V =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 xn−1

2
...

...
1 xn x2

n xn−1
n

 .

The function should form V and use the linear solver in numpy to find a.
You can get the condition number using the SVD of V or using a numpy

routine. The numpy routine either uses the SVD or some heuristic that
can fail.

Try your interpolation function on the target ”Runge” function

r(x) =
1

1 + 25x2
.

Take the xk to be uniformly spaced with x1 = −1 and xn = 1. The
interpolation values should be fk = r(xk). Make one plot with r and
three well chosen f curves. For moderate n the fit is OK. For very large n
the fit shows the Runge phenomenon. The phenomenon is visible but less
severe for intermediate n.

Repeat the experiment with similar looking target functions such as (Look
at many functions, not necessarily the ones listed here. Hand in one or
two that you think are interesting and different. If your Runge code is
completely automated, all you have to do is type in another function r
and push enter.)

r(x) = cos(πx) + 1

r(x) = e−
x2

2σ2 (play with σ)

r(x) =
1(

1 + 1
y2x2

)p (play with y and p)

The last example has poles at ±iy. The Runge example has poles at ±i 15 ,
which are close to the real axis.

Make a plot of the condition number κ(V) as a function of n. This is, of
course, the same for all the examples. The difference is that this one uses
many n values rather than just three carefully chosen values. Choose axes
(linear, semi-log, log-log) to try to see how V depends on n when it gets
large.

(Extra credit, if you have time and intertest) Repeat some of these exper-
iments using the Chebychev points. For those, take n angles θj uniformly
spaced in [−π, π] and take xk = cos(θk). Comment on the differences in
the results.

3

4. Spline approximation.

Do numerical experiments to determine the order of accuracy of cubic b-
spline interpolation. Start with a function r(x), evaluate r at n equally
spaced points in [0, 1] with separation ∆x. Call the spline interpolant
f(x). Estimate the maximum error by testing many points, also uniformly
spaced but with a much finer spacing:

M(∆x) = max
0≤x≤1

|f(x)− r(x)| ≈ max
k

|f(kh)− r(kh)| .

It should suffice to take h = .1∆x, but maybe try some smaller values to
make sure. A smaller value may make the accuracy results cleaner. Make
a plot or a table of M as a function of ∆x or n and determine the order
of accuracy. Use a smooth trial function r (or a few trial functions to see
whether the results are stable) that is non-trivial. For example, don’t use
a low order polynomial. Possible choose one that’s harder to interpolate
than sin(x).

Use the interpolate package of scipy to find spline interpolants. Make
sure to ask for cubic b-splines. Note that the routine (which you should
use) make splrep is a constructor that returns an object that can be used
to evaluate the spline function.

4

