Scientific Computing, Fall 2025
https://math.nyu.edu/~goodman/teaching/ScientificComputing2025/Scie ntificComputing.html

Assignment 8

1. KDE in various dimensions.

Kernel density estimation means estimating a probability density from a
collection of samples and an estimation kernel. To be specific (though this
is not necessary) choose the basic smoothing kernel to be

o 3lzl3

Suppose f(z) is a smooth probability density in d dimensions and that X
for j =1,--- ,n is a collection of independent samples of f. The density
estimate is

flo) = 2> oo - ;).

The lengthscale € smoother is

1
The value of density estimate f(I) is random because it depends on the
random samples X;. Denote the expected value of the density estimator
by

F@)=E[f@)] .

(a) Show that if f is smooth, then the bias of the KDE satisfies

(b) Show that the variance of the KDE satisfies (for small €)

~ C
var(f(z)) ~ on
Find the exponent p, which depends on n.

(¢) The total error of any estimator is the sum of the bias and the statis-
tical error. Suppose that the statistical error is equal to the standard
deviation of the estimator. Suppose that ¢ = n~* and find the ex-
ponent « that minimizes the total error (has the best power of n).
What is that power of n? What does that say about the accuracy of
KDE estimation if d is not small?


https://math.nyu.edu/~goodman/teaching/ScientificComputing2025/ScientificComputing.html

2. KDE experiment.

Use the Brownian bridge code form Assignment 7, but change notation so
the number of components is L and the Brownian bridge components are
Uj for 1 < j < L. The PDF for U = (Uy,--- ,Uy) is the same

1
pu) = Lemd(utrri)

Create n independent samples of the pair (X,Y"), where

We want to estimate and visualize the PDF f(z,y) using kernel density
estimation. Hints:

~

e Make a color contour plot of the estimated density f(x,y). Do this

by evaluating fon a uniform grid to create an array of values to pass
to the plot routine.

e Rescale x and y before doing the density estimate. That means,
choose length scales A\, and A\, and replace X; by X,;/)\,; and Y;
by Y;/A,. One way would be to use the standard deviation of the
samples X; and Y. Another way would be to use the range of values,
such as max X; — min X.

e If you want to understand the importance of scaling, try L = 100
without scaling. The range of X will be different from the range of
Y, so isotropic smoothing with the isotropic Gaussian will not work
well.

e Experiment with various n (number of samples) and € (smoothing
length) relations to see which work well.

e You can debug you code by taking (X,Y) to be from a bivariate
Gaussian with 0% # 0% and oxy = 0 (the covariance). The contour
lines should be elliptical. If you scale using standard deviation, the
contour lines should be circular.

e As always, you will lose points unless you make some comments on
the results. What did you learn from this?

3. The Runge phenomenon.

Write a function that takes as input n interpolation points and values
x=(x1---,2,) and values f1, - ,x,) and returns a tuple of two objects,
the first being an array of the polynomial coefficients a = (ag, -, an—1)
with f(z) = ap + a1 + - ap_12" " having f(z;) = fj for j=1,--- ,n.



The second item in the tuple should be the condition number of the
Vandermonde matrix

1z 23 - Pt
2 n—1
1 z x5 To
V =
1z, 22 an—l

The function should form V and use the linear solver in numpy to find a.
You can get the condition number using the SVD of V' or using a numpy
routine. The numpy routine either uses the SVD or some heuristic that
can fail.

Try your interpolation function on the target ”Runge” function

(@) =
N STl
Take the zp to be uniformly spaced with xr1y = —1 and =z, = 1. The

interpolation values should be fr = r(zx). Make one plot with r and
three well chosen f curves. For moderate n the fit is OK. For very large n
the fit shows the Runge phenomenon. The phenomenon is visible but less
severe for intermediate n.

Repeat the experiment with similar looking target functions such as (Look
at many functions, not necessarily the ones listed here. Hand in one or
two that you think are interesting and different. If your Runge code is
completely automated, all you have to do is type in another function r
and push enter.)

r(x) = cos(mzx) + 1

r(z) =€ 2.2 (play with o)

_71 ; 5

The last example has poles at +iy. The Runge example has poles at :tz%,
which are close to the real axis.

(play with y and p)

Make a plot of the condition number (V') as a function of n. This is, of
course, the same for all the examples. The difference is that this one uses
many n values rather than just three carefully chosen values. Choose axes
(linear, semi-log, log-log) to try to see how V depends on n when it gets
large.

(Ezxtra credit, if you have time and intertest) Repeat some of these exper-
iments using the Chebychev points. For those, take n angles ¢; uniformly
spaced in [—m, 7] and take z; = cos(f;). Comment on the differences in
the results.



4. Spline approximation.

Do numerical experiments to determine the order of accuracy of cubic b-
spline interpolation. Start with a function r(z), evaluate r at n equally
spaced points in [0,1] with separation Axz. Call the spline interpolant
f(z). Estimate the maximum error by testing many points, also uniformly
spaced but with a much finer spacing:

M(Aa) = e |f(@) — r(a)| & max | £ (k) — r(kh)]
It should suffice to take h = .1Az, but maybe try some smaller values to
make sure. A smaller value may make the accuracy results cleaner. Make
a plot or a table of M as a function of Ax or n and determine the order
of accuracy. Use a smooth trial function r (or a few trial functions to see
whether the results are stable) that is non-trivial. For example, don’t use
a low order polynomial. Possible choose one that’s harder to interpolate
than sin(z).

Use the interpolate package of scipy to find spline interpolants. Make
sure to ask for cubic b-splines. Note that the routine (which you should
use) make_splrep is a constructor that returns an object that can be used
to evaluate the spline function.



