

Assignment 3.

Given September 16, due September 23. Last revised, September 16.

Objective: Markov chains, II and lattices.

1. We have a three state Markov chain with transition matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} .$$

(Some of the transition probabilities are $P(1 \rightarrow 1) = \frac{1}{2}$, $P(3 \rightarrow 1) = \frac{1}{3}$, and $P(1 \rightarrow 2) = \frac{1}{4}$. Let $\tau = \min(t \mid X_t = 3)$.) Even though this τ is not bounded (it could be arbitrarily large), we will see that $P(\tau > t) \leq Ca^t$ for some $a < 1$ so that the probability of large τ is very small. This is enough to prevent the stopping time paradox (take my word for it). Suppose that at time $t = 1$, all states are equally likely.

- a.** Consider the quantities $u_t(j) = P(X_t = j \text{ and } \tau > t)$. Find a matrix evolution equation for a two component vector made from the $u_t(j)$ and a submatrix, \tilde{P} , of P .
- b.** Solve this equation using the eigenvectors and eigenvalues of \tilde{P} to find a formula for $m_t = P(\tau = t)$.
- c.** Use the answer of part b to find $E[\tau]$. It might be helpful to use the formula

$$\sum_{t=1}^{\infty} tP(\tau = t) = \sum_{t=1}^{\infty} P(\tau \geq t) .$$

Verify the formula if you want to use it.

- d.** Consider the quantities $f_t(j) = P(\tau \geq t \mid X_1 = j)$. Find a matrix recurrence for them.
- e.** Use the method of question 1 to solve this and find the f_t .

2. Let P be the transition matrix for an n state Markov chain. Let $v(k)$ be a function of the state $k \in \mathcal{S}$. For this problem, suppose that paths in the Markov chain start at time $t = 0$ rather than $t = 1$, so that $X = (X_0, X_1, \dots)$. For any complex number, z , with $|z| < 1$, consider the sum

$$E \left[\sum_{t=0}^{\infty} z^t v(X_t) \mid \mathcal{F}_0 \right] . \quad (1)$$

Of course, this is a function of $X_0 = k$, which we call $f(k)$. Find a linear matrix equation for the quantities f that involves P , z , and v . Hint: the sum

$$E \left[\sum_{t=1}^{\infty} z^t v(X_t) \mid \mathcal{F}_1 \right] .$$

may be related to (1) if we take out the common factor, z .

3. (Change of measure) Let P be the probability measure corresponding to ordinary random walk with step probabilities $a = b = c = 1/3$. Let Q be the measure for the random walk where the up, stay, and down probabilities from site x depend on x as

$$(c(x), b(x), a(x)) = \frac{1}{3} e^{-\beta(x)} (e^{-\alpha(x)}, 1, e^{\alpha(x)}) .$$

We may choose $\alpha(x)$ arbitrarily and then choose $\beta(x)$ so that $a(x) + b(x) + c(x) = 1$. Taking $\alpha \neq 0$ introduces drift into the random walk. The state space for walks of length T is the set of paths $x = x(0), \dots, x(T)$ through the lattice. Assume that the probability distribution for $x(0)$ is the same for P and Q . Find a formula for $Q(x)/P(x)$. The answer is a discrete version of Girsanov's formula.

4. In the urn process, suppose balls are either *stale* or *fresh*. Assume that the process starts with all n stale balls and that all replacement balls are fresh. Let τ be the first time all balls are fresh. Let $X(t)$ be the number of stale balls at time t . Show that $X(t)$ is a Markov chain and write the transition probabilities. Use the backward or forward equation approach to calculate the quantities $a(x) = E_x(\tau)$. This is a two term recurrence relation ($a(x+1) = \text{something} \cdot a(x)$) that is easy to solve. Show that at time τ , the colors of the balls are iid red with probability p . Use this to explain the binomial formula for the invariant distribution of colors.