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1 Continuous probability

1.1.  Introduction: Recall that a set Q is discrete if it is finite or countable.
We will call a set continuous if it is not discrete. Many of the probability
spaces used in stochastic calculus are continuous in this sense (examples below).
Kolmogorov! suggested a general framework for continuous probability based
on abstract integration with respect to abstract probability measures. The
theory makes it possible to discuss general constructions such as conditional
expectation in a way that applies to a remarkably diverse set of examples.
The difference between continuous and discrete probability is the difference
between integration and summation. Continuous probability cannot be based

on the formula
P(A)=>" Pw). (1)
weEA

Indeed, the typical situation in continuous probability is that any event consist-
ing of a single outcome has probability zero: P({w}) =0 for all w € Q.

As we explain below, the classical formalism of probability densities also does
not apply in many of the situations we are interested in. Abstract probability
measures give a framework for working with probability in path space, as well
as more traditional discrete probability and probabilities given by densities on
R™.

These notes outline the Kolmogorov’s formalism of probability measures for
continuous probability. We leave out a great number of details and mathemat-
ical proofs. Attention to all these details would be impossible within our time
constraints. In some cases we indicate where a precise definition or a complete
proof is missing, but sometimes we just leave it out. If it seems like something
is missing, it probably is.

1.2. Examples of continuous probability spaces: Be definition, a probabil-
ity space is a set, €, of possible outcomes, together with a o—algebra, F, of
measurable events. This section discusses only the sets 2. The corresponding
algebras are discussed below.

R, the real numbers. If z( is a real number and u(z) is a probability density,
then the probability of the event B,.(z¢) = {zg —r < X < z¢+ 7} is

xo+Tr
P([a:o—r,xo—l—r}):/ u(x)dx — 0 asr — 0.

ro—T

IThe Russian mathematician Kolmogorov was active in the middle of the 20" century.
Among his many lasting contributions to mathematics are the modern axioms of probability
and some of its most important theorems. His theories of turbulent fluid flow anticipated
modern fractals be several decades.



Thus the probability of any individual outcome is zero. An event with
positive probability (P(A) > 0) is made up entirely of outcomes zy € A,
with P(zg) = 0. Because of countable additivity (see below), this is only
possible when 2 is uncountable.

R™, sequences of n numbers (possibly viewed as a row or column vector depend-
ing on the context): X = (X;...,X,). Here too if there is a probability
density then the probability of any given outcome is zero.

SN. Let S be the discrete state space of a Markov chain. The space ST
is the set of sequences of length T of elements of S. An element of ST
may be written z = (2(0),z(1),---,2(T — 1)), with each of the z(¢) in
S. Tt is common to write x; for x(t). An element of SV is an infinite se-
quence of elements of S. The “exponent” N stands for “natural numbers”.
We misuse this notation because ours start with ¢ = 0 while the actual
natural numbers start with ¢ = 1. We use SV when we ask questions
about an entire infinite trajectory. For example the hitting probability is
P(X(t) # 1 for all t > 0). Cantor proved that SV is not countable when-
ever the state space has more than one element. Generally, the probability
of any particular infinite sequence is zero. For example, suppose the tran-
sition matrix has P;; = .6 and ug(1) = 1. Let = be the infinite sequence
that never leaves state 1: x = (1,1,1,---). Then P(z) = up(1)-.6-.6---.
Multiplying together an infinite number of .6 factors should give the an-
swer P(xz) = 0. More generally, if the transition matrix has Pj, <r <1
for all (4, k), then P(z) = 0 for any single infinite path.

C([0,T] — R), the path space for Brownian motion. The C stands for “con-
tinuous”. The [0,7T] is the time interval 0 < ¢ < T'; the square brackets
tell us to include the endpoints (0 and T in this case). Round parentheses
(0, T) would mean to leave out 0 and T'. The final R is the “target” space,
the real numbers in this case. An element of 2 is a continuous function
from the interval [0, 7] to R. This function could be called X () or X; (for

0 <t <T). In this space we can ask questions such as P(fOT X(t)dt > 4).

1.3. Probability measures: Let F be a o—algebra of subsets of Q. A
probability measure is a way to assign a probability to each event A € F. In
discrete probability, this is done using (1). In R™ a probability density leads to
a probability measure by integration

P(A) = /A w(z)dz | @)

There are still other ways to specify probabilities of events in path space. All
of these probability measures satisfy the same basic axioms.

Suppose that for each A € F we have a number P(A). The numbers P(A)
are a probability measure if

i. If A€ F and B € F are disjoint events, then P(AU B) = P(A) + P(B).



ii. P(A) > 0 for any event A € F.
iii. P(Q) = 1.

iv. If A, € F is a sequence of events each disjoint from all the others and
1A, = A, then > 7 | P(A,) = P(A).

The last property is called countable additivity. It is possible to consider prob-
ability measures that are not countably additive, but is not bery useful.

1.4. Example 1, discrete probability: If € is discrete, we may take F to be
the set of all events (i.e. all subsets of ). If we know the probabilities of each
individual outcome, then the formula (1) defines a probability measure. The
axioms (i), (ii), and (iii) are clear. The last, countable additivity, can be verified
given a solid undergraduate analysis course.

1.5.  Borel sets: It is rare that one can define P(A) for all A C Q. Usually,
there are non measurable events whose probability one does not try to define
(see below). This is not related to partial information, but is an intrinsic aspect
of continuous probability. Events that are not measurable are quite artificial,
but they are impossible to get rid of. In most applications in stochastic calculus,
it is convenient to take the largest c—algebra to be the Borel sets?

In a previous lecture we discussed how to generate a o—algebra from a
collection of sets. The Borel algebra is the o—algebra that is generated by all
balls. The open ball with center xy and radius » > 0 in n dimensional space is
B.(zg) = {x | |z — 20| < r. A “ball” in one dimension is an interval. In two
dimensions it is a disk. Note that the ball is solid, as opposed to the hollow
sphere, Sp(x9) = {z||r —xo| =r}. The condition |z — x| < r instead of
|z — o] < 7, defines a closed ball. The o—algebra generated by open balls is
the same as the o—algebra generated by closed balls (check this if you wish).

1.6. Borel sets in path space: The definition of Borel sets works the same
way in the path space of Brownian motion, C([0, 7], R). Let x((¢) amd x(t) be
two continuous functions of ¢. The distance between them in the “sup norm” is

|2 —zoll = sup [z(t) —zo(t)] -
0<t<T

We often use double bars to represent the distance between functions and single
bar absolute value signs to represent the distance between numbers or vectors
in R™. As before, the open ball of radius r about a path z( is the set of all
paths with ||z — ]| < r.

1.7. The o—algebra for Markov chain path space: There is a convenient
limit process that defines a useful o—algebra on SV, the infinite time horizon
path space for a Markov chain. We have the algebras F; generated by the first

2The larger o —algebra of Lebesgue sets seems to more of a nuisance than a help, particularly
in discussing convergence of probability measures in path space.



t + 1 states z(0), z(1), ..., 2(¢). We take F to be the oc—algebra generated
by all these. Note that the event A = {X(¢) # 1 for ¢t > 0} is not in any of
the F;. However, the event A; = {X(t) # 1 for 0 <t < T} is in F;. Therefore
A = Ug>0A4; must be in any o—algebra that contains all the F;. Also note that
the union of all the F; is an algebra of sets, though it is not a o—algebra.

1.8. Generating a probability measure: Let M be a collection of events
that generates the o—algebra F. Let A be the algebra of sets that are finite
intersections, unions, and complements of events in M. Clearly the c—algebra
generated by M is the same as the one generated by A. The process of going
from the algebra A to the o—algebra F is one of completion, adding all limits
of countable intersections or unions of events in A.

In order to specify P(A) for all A € F, it suffices to give P(A) for all events
A € A. That is, if there is a countably additive probability measure P(A) for
all A € F, then it is completely determined by the numbers P(A) for those
A € A. Hopefully is is plausable that if the events in A generate those in F,
then the probabilities of events in M determine the probabilities of events in F
(proof ommitted).

For example, in R™ if we specify P(A) for event described by finitely many
balls, then we have determined P(A) for any Borel set. It might be that the
numbers P(A) for A € A are inconsistent with the axioms of probability (which
is easy to check) or can’t be extended in a way that is countably additive to all of
F (doesn’t happen in our examples), but otherwise the measure is determined.

1.9. Non measurable sets (technical aside): A construction demonstrates that
non measurable sets are unavoidable. Let € be the unit circle. The simplest
probability measure on € would seem to be uniform measure (divided by 27 so
that P(2) = 1). This measure is rotation invariant: if A is a measurable event
having probability P(A) then the event A+ 60 = {x + 0 | x € A} is measurable
and has P(A+6) = P(A). It is possible to construct a set B and a (countable)
sequence of rotations, 6, so that the events B + 6, and B + 6,, are disjoint
if £ # n and |J,, B + 6, = Q. This set cannot be measurable. If it were and
i = P(B) then there would be two choices: ;=0 or g > 0. In the former case
we would have P(2) =3 P(B+60,)=>_,0=0, which is not what we want.
In the latter case, again using countable additivity, we would get P() = co.
The construction of the set B starts with a description of the 6,,. Write n
in base ten, flip over the decimal point to get a number between 0 and 1, then
multiply by 27. For example for n = 130, we get 6,, = 6130 = 27 - .031. Now
use the 60, to create an equivalence relation and partition of Q by setting = ~ y
if x = y+ 6, (mod 27) for some n. The reader should check that this is an
equivalence relation (x ~y — y ~z, and  ~y and y ~ z — x ~ z). Now,
let B be a set that has exactly one representative from each of the equivalence
classes in the partition. Any = € € is in one of the equivalence classes, which
means that there is a y € B (the representative of the x equivalence class) and
an n so that y 4+ 6,, = x. That means that any z € Q2 has x € B + 0,, for some
n, which is to say that |J, B + 6, = Q. To see that B + 6, is disjoint from



B + 60, when k # n, suppose that x € B + 0, and = € 0,. Then x = y + 0,
and x = z+ 6, for y € B and z € B. But (and this is the punch line) this
would mean y ~ z, which is impossible because B has only one representative
from each equivalence class. The possibility of selecting a single element from
each partition element without having to say how it is to be done is the aziom
of choice.

1.10. Probability densities in R™: Suppose u(x) is a probability density in R™.
Ifg A is an event made from finitely many balls (or rectangles) by set operations,
we can define P(A) by integrating, as in (2). This leads to a probability measure
on Borel sets corresponding to the density u. Deriving the probability measure
from a probability density does not seem to work in path space because there
is nothing like the Riemann integral to use in® (2) Therefore, we describe path
space probability measures directly rather than through probability densities.

1.11. Measurable functions: Let €2 be a probability space with a oc—algebra
F. Let f(w) be a function defined on Q. In discrete probability, f was measur-
able with respect to F if the sets B, = {w | f(w = a)} all were measurable. In
continuous probability, this definition is replaced by the condition that the sets
Agy ={w | a < f(w) < b} are measurable. Because F is countably additive, and
because the event a < f is the (countable) union of the events a + = < f, this

is the same as requiring all the sets Ay, = {w | a < f(w) < b} to be measurable.
If Q is discrete (finite or countable), then the two definitions of measurable
function agree.

In continuous probability, the notion of measurability of a function with
respect to a o—algebra plays two roles. The first, which is purely technical,
is that f is sufficiently “regular” (meaning not crazy) that abstract integrals
(defined below) make sense for it. The second, particularly for smaller algebras
G C F, again involves incomplete information. A function that is measurable
with respect to G not only needs to be regular, but also must depend on fewer
variables (possibly in some abstract sense).

1.12. Integration with respect to a measure: The definition of integration
with respect to a general probability measure is easier than the definition of the
Riemann integral. The integral is written

E[f] = flw)dP(w).

weN

We will see that in R™ with a density u, this agrees with the classical definition

Elf)= | S,

3The Feynman integral in path space has some properties of true integrals but lacks others.
The probabilist Mark Kac (pronounced “cats”) discovered that Feynman’s ideas applied to
the heat equation rather than the Schrédinger equation can be interpreted as integration with
respect to Wiener measure. This is now called the Feynman Kac formula.



if we write dP(z) = u(x)dz. Note that the abstract variable w is replaced by
the concrete variable, x, in this more concrete situation. The general definition
is forced on us once we make the natural requirements

i. If A € F is any event, then E[14] = P(A). The integral of the indicator
function if an event is the probability of that event.

ii. If f; and f; have f1(w) < fo(w) for all w € Q, then E[f;] < E[f2]. “Integra-
tion is monotone”.

iii. For any reasonable functions f; and f (e.g. bounded), we have Elaf; +
bfa] = aE[f1] + bE[f2]. (Linearity of integration).

iv. If f,(w) is an increasing family of positive functions converging pointwise to
f (falw) > 0and fry1(w) > fr(w) for all n, and f,(w — f(w) as n — oo
for all w), then E[f,] — E[f] as n — co. (This form of countable additiv-
ity for abstract probability integrals is called the monotone convergence
theorem.)

A function is a simple function if there are finitely many events Ay, and
weights wy, so that f = >, wilya,. Properties (i) and (iii) imply that the
expectation of a simple function is

Elf] =) weP(Ar) .
k

We can approximate general functions by simple functions to determine their
expectations.

Suppose f is a nonnegative bounded function: 0 < f(w) < M for all w € Q.
Choose a small number € = 27" and define the* “ring sets” Ay = {(k — 1)e <
f < ke. The Ay depend on € but we do not indicate that. Although the events
A might be complicated, fractal, or whatever, each of them is measurable. A
simple function that approximates f is fn(w) = >, (k —1)ela,. This f, takes
the value (k — 1)e on the sets A;. The sum defining f,, is finite because f is
bounded, though the number of terms is M/e. Also, f,(w) < f(w) for each
w € Q (though by at most €). Property (ii) implies that

E[f] = E[fa] =Y (k= 1)eP(Ay) .

k

In the same way, we can consider the upper function g, = >~ kela, and have
E[f] < Elga] = Y keP(Ay) .
k

The reader can check that f, < fr11 < f < gnt1 < gn and that g, — f, < e.
Therefore, the numbers E[f,] form an increasing sequence while the E[g,] are a

4Take f = f(x,y) = 22 + y? in the plane to see why we call them ring sets.



decreasing sequence converging to the same number, which is the only possible
value of E[f] consistent with (i), (ii), and (iii).

It is sometimes said that the difference between classical (Riemann) integra-
tion and abstract integration (here) is that the Riemann integral cuts the x axis
into little pieces, while the abstarct integral cuts the y axis (which is what the
simple function approximations amount to).

If the function f is positive but not bounded, it might happen that F[f] = cc.
The “cut oft” functions, fis(w) = min(f(w), M), might have E[fy;] — oo as
M — oo. If so, we say E[f] = oo. Otherwise, property (iv) implies that
E[f] = imp—oo E[fm]. If f is both positive and negative (for different w),
we integrate the positive part, fi(w) = max(f(w),0), and the negative part
f—(w) = min(f(w), 0 separately and subtract the results. We do not attempt a
definition if F[f}] = oo and E[f_] = —oo. We omit the long process of showing
that these definitions lead to an integral that actually has the properties (i) -

(iv).

1.13.  Markov chain probability measures on SV: Let A = Uu>,Fu as before.
The probability of any A € A is given by the probability of that event in F;
if A € F,. Therefore P(A) is given by a formula like (1) for any A € A. A
theorem of Kolmogorov states that the completion of this measure to all of F
makes sense and is countably additive.

1.14. Conditional expectation: We have a random variable X (w) that is
measurable with respect to the o—algebra, 7. We have o—algebra that is a
sub algebra: G C F. We want to define the conditional expectation Y = E[X |
G]. In discrete probability this is done using the partition defined by G. The
partition is less useful because it probably is uncountable, and because each
partition element, B(w) = NA (the intersection being over all A € G with
w € A), may have P(B(w)) = 0 (examples below). This means that we cannot
apply Bayes’ rule directly.

The definition is that Y (w) is the random variable measurable with respect
to G that best approximates X in the least squares sense

E(Y - X)} =min E[(Z - X)?.

[( )] = min E[( )7

This is one of the definitions we gave before, the one that works for continuous
and discrete probability. In the theory, it is possible to show that there is a
minimizer and that it is unique.

1.15.  Generating a c—algebra: When the probability space, €2, is finite, we
can understand an algebra of sets by using the partition of 2 that generates the
algebra. This is not possible for continuous probability spaces. Another way
to specify an algebra for finite 2 was to give a function X (w, or a collection
of functions Xy (w) that are supposed to be measurable with respect to F. We
noted that any function measurable with respect to the algebra generated by
functions Xy, is actually a function of the Xj. That is, if I € F (abuse of



notation), then there is some function u(x1,...,z,) so that
Fw) = u(Xi(w), ..., Xn(w)) - (3)

The intuition was that F contains the information you get by knowing the
values of the functions Xj;. Any function measurable with respect to this alge-
bra is determined by knowing the values of these functions, which is precisely
what (3) says. This approach using functions is often convenient in continuous
probability.

If Q is a continuous probability space, we may again specify functions Xy
that we want to be measurable. Again, these functions generate an algebra,
a o—algebra, F. If F is measurable with respect to this algebra then there is
a (Borel measurable) function w(z1,...) so that F(w) = u(Xy,...), as before.
In fact, it is possible to define F in this way. Saying that A € F is the same
as saying that 1,4 is measurable with respect to F. If u(z,...) is a Borel
measurable function that takes values only 0 or 1, then the function F' defined by
(3) defines a function that also takes only 0 or 1. The event A = {w | F(w) =1
has (obviously) F' = 14. The o—algebra generated by the X is the set of
events that may be defined in this way. A complete proof of this would take a
few pages.

1.16. Example in two dimensions: Suppose () is the unit square in two
dimensions: (z,y) € if0 <z <1and 0 <y < 1. The “x coordinate function”
is X (z,y) = . The information in this is the value of the x coordinate, but not
the y coordinate. An event measurable with respect to this F will be any event
determined by the x coordinate alone. I call such sets “bar code” sets. You can
see why by drawing some.

1.17. Marginal density and total probability: The abstract situation is that
we have a probability space, 2 with generic outcome w € 2. We have some
functions (X1 (w),...,X,(w)) = X(w). With Q in the background, we can ask
for the joint PDF of (X,...,X,), written u(x1,...,2,). A formal definition of
u would be that if A C R™, then

P(X(w) € 4) = / w(z)da . (@)
T€EA

Suppose we neglect the last variable, X, and consider the reduced vector

X(w) = (X1,...,Xn—1) with probability density @(zq,...,2,-1). This @ is

the “marginal density” and is given by integrating u over the forgotten variable:

oo
ﬂ(xl,...,xnl):/ w(zy, ..., xn)de, . (5)
—o0

This is a continuous probability analogue of the law of total probability: in-
tegrate (or sum) over a complete set of possibilities, all values of z,, in this
case.



We can prove (5) from (4) by considering a set B C R"~! and the corre-
sponding set A C R"™ given by A = B X R (i.e. A is the set of all pairs Z, )
with & = (21,...,2p,—1) € B). The definition of A from B is designed so that
P(X € A) = P(X € B). With this notation

P(Xe€B) = P(XecA)

= /u(w)dx

A
/ / w(Z, xp)de,dT
ze€B Jxpy=—00

n

HXEB):(LM@ﬁ.

This is exactly what it means for @ to be the PDF for X.

1.18. Classical conditional expectation: Again in the abstract setting w € €,
suppose we have random variables (X1 (w), ..., X, (w)). Now consider a function
f(xz1,...,xy,), its expectated value E[f(X)], and the conditional expectations

The Bayes’ rule definition of v(x,) has some trouble because both the denomi-
nator, P(X,, = z,), and the numerator,

Elf(X)-1x,=c.]

are zero.

The classical solution to this problem is to replace the exact condition X,, =
x, with an approximate condition having positive (though small) probability:
T, < X, <z, + . We use the approximaion

T +e€
/ 9 60)dEn ~ €q(F ) -

n

The error is roughly proportional to €2 and much smaller than either the terms
above. With this approximation the numerator in Bayes’ rule is

En=Tn+e
E[f(X) : 191nSXn§£En+€] = /:GR"l / f(jvfn)u(i‘vxn)dgndi‘

n :f'll

%

e/f(i,xn)u(i,xn)d:i’.
Similarly, the denominator is

P, <X, <a,+¢€) = e/u(gﬁ,mn)di .

T



If we take the Bayes’ rule quotient and let ¢ — 0, we get the classical formula

Ji [(@ zn)u(Z, zn)dZ
Jiu(Z, xn)dz ’ (6)

E[f(X) IXn an] =

By taking f to be the characteristic function of an event (all possible events)
we get a formula for the probability density of X given that X,, = x,,, namely

u(Z, )
) Jiu(E, z,)dz )
This is the classical formula for conditional probability density. The integral

in the denominator insures that, for each x,, @ is a probability density as a
function of Z, that is

(x| X, ==

/ﬂ(i | Xn :mn)dj =1,

for any value of x,. It is very useful to notice that as a function of Z, v and u
almost the same. They differ only by a constant normalization. For example,
this is why conditioning Gaussian’s gives Gaussians.

1.19. Modern conditional expectation: The classical conditional expectation
(6) and conditional probability (7) formulas are the same as what comes from
the “modern” definition from paragraph 1.6. Suppose X = (Xi,...,X,) has
density u(x), F is the o—algebra of Borel sets, and G is the o —algebra generated
by X, (which might be written X,,(X), thinking of X as w in the abstract
notation). For any f(z), we have f(z,) = E[f | G]. Since G is generated by
X, the function f being measurable with respect to G is the same as it’s being
a function of x,,. The modern definition of f(z,) is that it minimizes

[ (1)~ fwn)) ula)de. ®

over all functions that depend only on x,, (measurable in G).
To see the formula (6) emerge, again write z = (Z,x,), so that f(x) =
f(Z,zy), and u(z) = u(Z, z,). The integral (8) is then

- 2
/ / f(@, ) — f(x”)> u(Z, xp)dxdx, .
Tp=—o00 JTER"—1

In the inner integral:
~ rs 2 ~ ~
R = [ ($wn) = Fen) uldm)is
#eRn—1

f(x,) is just a constant. We find the value of f(z,) that minimizes R(z,) by
minimizing the quantity

[ 50007

10



The optimal g is given by the classical formula (6).

1.20.  Modern conditional probability: We already saw that the modern ap-
proach to conditional probability for G C F is through conditional expectation.
In its most general form, for every (or almost every) w € (Q, there should be
a probability measure P, on () so that the mapping w — P, is measureable
with respect to G. The measurability condition probably means that for every
event A € F the function ps(w) = P,(A) is a G measurable function of w.
In terms of these measures, the conditional expectation f = E[f | G] would be
f(w) = E,[f]. Here E, means the expected value using the probability measure
P,,. There are many such subscripted expectations coming.

A subtle point here is that the conditional probability measures are defined
on the original probability space, 2. This forces the measures to “live” on
tiny (generally measure zero) subsets of Q. For example, if Q@ = R™ and G is
generated by x,, then the conditional expectation value f (z,,) is an average of
f (using density u) only over the hyperplane X,, = x,,. Thus, the conditional
probability measures Px depend only on z,, leading us to write P, . Since
f(zn) = [ f(x)dP,, (z), and f(x,) depends only on values of f(#,z,) with
the last coordinate fixed, the measure dP,, is some kind of § measure on that
hyperplane. This point of view is useful in many advanced problems, but we
will not need it in this course (I sincerely hope).

1.21. Semimodern conditional probability: Here is an intermediate “semi-
modern” version of conditional probability density. We have 2 = R", and
Q= R" ! with elements ¥ = (x1,...,7,_1). For each x,, there will be a (con-

ditional) probability density function 4, . Saying that @ depends only on z,, is
the same as saying that the function x — 4, is measurable with respect to G.
The conditional expectation formula (6) may be written

E[f | Gl(zn) = /RM f(Z, 20y, (2)dZ .

In other words, the classical w(Z | X,, = x,,) of (7) is the same as the semimodern

Uy, (T).

2 Gaussian Random Variables

The central limit theorem (CLT) makes Gaussian random variables important.
A generalization of the CLT is Donsker’s “invariance principle” that gives Brow-
nian motion as a limit of random walk. In many ways Brownian motion is a
multivariate Gaussian random variable. We review multivariate normal random
variables and the corresponding linear algebra as a prelude to Brownian motion.

2.1. Gaussian random variables, scalar: The one dimensional “standard

11



normal”, or Gaussian, random variable is a scalar with probability density

1 2
— —x/2
u(z) = e .
(@)= 7%=
The normalization factor \/% makes [ uQ(x)dx = 1 (a famous fact). The
mean value is E[X] = 0 (the integrand ze~* /2 is antisymmetric about 2 = 0).

The variance is (using integration by parts)

E[XZ] _ 22 —m2/2d

w
E[wx I/z)d:r

1 e d 2
- e /2) g
X (& X
\/271' [oo < >

Ll

—zz/de

|
|
‘H
7~
)
ml
8
~
m

= 0+1

Similar calculations give E[X*] = 3, E[X%] = 15, and so on. I will often write
Z for a standard normal random variable. A one dimensional Gaussian random
variable with mean E[X] = p and variance var(X) = E[(X — p)?] = 02 has
density
() 1 NG
Ulr) = —/—m—e 20
V2mo?

It is often more convenient to think of Z as the random variable (like w) and
write X = p+o0Z. We write X ~ N (i1, 0?) to express the fact that X is normal
(Gaussian) with mean p and variance o2. The standard normal random variable

is Z ~ N(0,1)

2.2.  Multivariate normal random variables: The n x n matrix, H, is positive
definite if * Hz > 0 for any n component column vector x # 0. It is symmetric
if H* = H. A symmetric matrix is positive definite if and only if all its eigenvales
are positive. Since the inverse of a symmetric matrix is symmetric, the inverse
of a symmetric positive definite (SPD) matrix is also SPD. An n component
random variable is a mean zero multivariate normal if it has a probability density
of the form )
w(z) = —e 3% e

for some SPD matrix, H. We can get mean p = (u1, ..., u,)* either by taking
X + p where X has mean zero, or by using the density with =* Hx replaced by
(. —p) H(x — p).

If X € R™ is multivariate normal and if A is an m X n matrix with rank m,
then Y € R™ given by ¥ = AX is also multivariate normal. Both the cases
m = n (same number of X and Y variables) and m < n occur.
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2.3. Diagonalizing H: Suppose the eigenvalues and eigenvectors of H are
Huv; = A\ju;. We can express v € R" as a linear combination of the v; either in
vector form, x = Z?:l Y;v;, or in matrix form, x = Vy, where V is the n x n
matrix whose columns are the v; and y = (y1,...,¥y,)*. Since the eigenvectors
of a symmetric matrix are orthogonal to each other, we may normalize them so
that vivy = d;5, which is the same as saying that V' is an orthogonal matrix,
V*V = I. In the y variables, the “quadratic form” z* Hz is diagonal, as we can
see using the vector or the matrix notation. With vectors, the trick is to use the
two expressions x = Y7, y;v; and @ = >} yxvg, which are the same since j
and k are just summation variables. Then we can write

T*Hx = Zijj H(wa)
j=1 k=1
= > (i Hv) g

o Hr = Y i (9)

The matrix version of the eigenvector /eigenvalue relations is V*HV = A (A be-
ing the diagonal matrix of eigenvalues). With this we have v* Hx = (Vy)*HVy =
y*(V*HV)y = y*Ay. A diagonal matrix in the quadratic form is equivalent to
having a sum involving only squares )\ky,%. All the A\g will be positive if H is
positive definite. For future reference, also remember that det(H) = [;_; M.

2.4. Calculations using the multivariate normal density: We use the y
variables as new integration variables. The point is that if the quadratic form is
diagonal the muntiple integral becomes a product of one dimensional gaussian
integrals that we can do. For example,

00 0o
/2 67%(>\1yf+>\zy§)dy1dy2 = / / eié(Alyﬂ&yg)dyldyZ
R v Y

1=—00 2=—00

- /Oo e~ MY 2y, /OO e~ Y3/ 2y,
Yy1=—00 Y2=—00
= \/27’(/)\1'\/27’(/)\2.

Ordinarily we would need a Jacobian determinant representing ‘%‘, but here

the determinant is det(V') = 1, for an orthogonal matrix. With this we can find
the normalization constant, z, by

1= / w(z)dz
1



1 1%
= — —32Y Ayd
S Eal
1 1< )
= - [ exn(=5 > Mvi))dy
k=1
- (H ) dy
z k=1
1 o
= I € A’Cy’“dy/«)
z —
k=1 k=700
1 n
= ; H \ 277/)\k
k=1
L (27.(_)n/2
z det(H)
This gives a formula for z, and the final formula for the multivariate normal
density
vdet H *
u(z) = LS8 gt Ha (10)
(271—)71/2
2.5.  The covariance, by direct integration: We can calculate the covariance

matrix of the X;. The jk element of E[XX*] is E[X,;X] = cov(X,, X}). The
covariance matrix consisting of all these elements is C' = E[XX*]. Note the
conflict of notation with the constant C above. A direct way to evaluate C' is
to use the density (10):

Cc = / zx*u(z)de
Vdet H .
_ € / ¥ 7§z Hmdl, .

271' n/2

Note that the integrand is an n X nm matrix. Although each particular zz*
has rank one, the average of all of them will be a nonsingular positive definite
matrix, as we will see. To work the integral, we use the x = Vy change of
variables above. This gives

Vdet H A
C= (on n/2/ (Vy)(Vy)*e ~3y Ydy .
We use (Vy)(Vy)* = V(yy*)V* and take the constant matrices V outside the
integral. This gives C' as the product of three matrices, first V', then an integral
involving yy*, then V*. So, to calculate C, we can calculate all the matrix

elements
vdet H
° / yiyhe 2V M dy |

Bjk 27-(- n/2
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Clearly, if j # k, Bjr = 0, because the integrand is an odd (antisymmetric)
function, say, of y;. The diagonal elements By, may be found using the fact
that the integrand is a product:

Vdet H Yy -
By, = CRE / e~ 2y, / yhe MR 2dy,
itk \vs

Yk

As before, A; factors (for j # k) integrate to y/2m/A;. The Ay factor integrates

27 /(Ak)3/2. The \j, factor differs from the others only by a factor 1/\.
Most of these factors combine to cancel the normalization. All that is left is

B =5 -
This shows that B = A™!, so
C=VA'V*.
Finally, since H = VAV*, we see that
C=H". (11)

The covariance matrix is the inverse of the matrix defining the multivariate
normal.

2.6. Linear functions of multivariate normals: A fundamental fact about
multivariate normals is that a linear transformation of a multivariate normal is
also multivariate normal, provided that the transformation is onto. Let A be
an m X n matrix with m < n. This A defines a linear transformation y = Azx.
The transformation is “onto” if, for every y € R™, there is at least ibe z € R™
with Ax = y. If n = m, the transformation is onto if and only if A is invertable
(det(A) # 0), and the only = is A~'y. If m < n, A is onto if its m rows
are linearly independent. In this case, the set of solutions is a “hyperplane”
of dimension n — m. Either way, the fact is that if X is an n dimensional
multivariate normal and ¥ = AX, then Y is an m dimensional multivariate
normal. Given this, we can completely determine the probability density of Y
by calculating its mean and covariance matrix. Writing pux and py for the
means of X and Y respectively, we have

py = E|Y] = E[AX] = AE[X] = Apx .
Similarly, if E[Y] = 0, we have
Cy = E[YY*] = E[(AX)(AX)*] = FIAXX*A*] = AE[XX*|A* = ACx A* .

The reader should verify that if C'x is n x n, then this formula gives a Cy that
is m x m. The reader should also be able to derive the formula for Cy in terms
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of Cx without assuming that uy = 0. We will soon give the proof that linear
functions of Gaussians are Gaussian.

2.7. Uncorrelation and independence: The inverse of a symmetric matrix
is another symmertic matrix. Therefore, Cx is diagonal if and only if H is
diagonal. If H is diagonal, the probability density function given by (10) is a
product of densities for the components. We have already used that fact and
will use it more below. For now, just note that Cx is diagonal if and only if the
components of X are uncorrelated. Then Cx being diagonal implies that H is
diagonal and the components of X are independent. The fact that uncorrelated
components of a multivariate normal are actually independent firstly is a prop-
erty only of Gaussians, and secondly has curious consequences. For example,
suppose Z; and Zs are independent standard normals and X; = Z; + Z5 and
Xy = 71 — Z5, then X; and X, being uncorrelated, are independent of each
other. This may seem surprising in view of that fact that increasing Z; by 1/2
increases both Xy and X, by the same 1/2. If Z; and Zs were independent uni-
form random variables (PDF = u(z) =1if 0 < z < 1, u(z) = 0 otherwise), then
again X; and Xs would again be uncorrelated, but this time not independent
(for example, the only way to get X7 = 2 is to have both Z; = 1 and Zy = 1,
which implies that Xs = 0.).

2.8. Application, generating correlated normals: There are simple tech-
niques for generating (more or less) independent standard normal random vari-
ables. The Box Muller method being the most famous. Suppose we have a
positive definite symmetric matrix, C'x, and we want to generate a multivari-
ate normal with this covariance. One way to do this is to use the Choleski
factorization Cx = LL*, where L is an n x n lower triangular matrix. Now
define Z = (Zy,...,Z,) where the Z; are independent standard normals. This
Z has covariance Cz = I. Now define X = LZ. This X has covariance
Cx = LIL* = LL*, as desired. Actually, we do not necessarily need the
Choleski factorization; L does not have to be lower triangular. Another possi-
bility is to use the “symmetric square root” of C'x. Let Cx = VXV™*, where
¥ is the diagonal symmetric matrix with eigenvalues of Cx (X = A~! where
A is given above), and V is the orthogonal matrix if eigenvectors. We can
take A = V/SV*, where VX is the diagonal matrix. Usually the Choleski
factorization is easier to get than the symmetric square root.

2.9. Central Limit Theorem: Let X be an n dimensional random variable
with probability density u(z). Let XM X®@ . be asequence of independent
samples of X, that is, independent random variables with the same density wu.
Statisticians call this iid (independent, identically distributed). If we need to
talk about the individual components of X (¥ we write X j(-k) for component j
of X*). For example, suppose we have a population of people. If we choose a
person “at random” and record his or her height (X;) and weight (X3), we get a
two dimensional random variable. If we measure 100 people, we get 100 samples,
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XM X100 each consisting of a height and weight pair. The weight of
person 27 is X{*”. Let p = E[X] be the mean and C' = E[(X — pu)(X — p)*]
the covariance matrix. The Central Limit Theorem (CLT) states that for large

n, the random variable

n 1 .
R — ﬁZ(X(k) — )
k=1

has a probability distribution close to the multivariate normal with mean zero
and covariance C'. One interesting consequence is that if X; and X5 are uncor-
related then an average of many independent samples will have Rgn) and Ré")
nearly independent.

2.10. What the CLT says about Gaussians: The Central Limit Theorem
tells us that if we avarage a large number of independent samples from the
same distribution, the distribution of the average depends only on the mean
and covariance of the starting distribution. It may be surprising that many
of the properties that we deduced from the formula (10) may be found with
almost no algebra simply knowing that the multivariate normal is the limit of
averages. For example, we showed (or didn’t show) that if X is multivariate
normal and Y = AX where the rows of A are linearly independent, then Y is
multivariate normal. This is a consequence of the averaging property. If X is
(approximately) the average of iid random variables Uy, then Y is the average
of random variables V;, = AUy. Applying the CLT to the averaging of the Vj
shows taht Y is also multivariate normal.

Now suppose U is a univariate random variable with iid samples Uy, and
E[Ux] = 0, E[U} = 0?], and E[U}}] = a4 < oo Define X,, = ﬁzzzn Up. A
calculation shows that E[X1] = 30* + Lay. For large n, the fourth moment of
the average depends only on the second moment of the underlying distribution.
A multivariate and slightly more general version of this calculation gives “Wick’s
theorem”, an expression for the expected value of a product of components of
a multivariate normal in terms of covariances.
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