
Stochastic Calculus, Spring, 2007 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2007/)

Assignment 10.

Due April 5.

1. Consider an ordinary differential equation

dx = f(x, t)dt . (1)

We make an approximate solution using a time step ∆t, discrete times tk = k∆t, and
an approximate solution xk ≈ x(tk). One approximation method is forward Euler.
This is an approximation using (1) with dt = ∆t: x(t+∆t)−x(t) ≈ f(x(t), t)∆t. The
discrete method based on this is

xk+1 − xk = f(xk, tk)∆t . (2)

Another approximation method uses (1) with dt = −∆t to get x(t − ∆t) − x(t) ≈
−f(x(t), t)∆t. We apply this with t = tk+1 to get

xk+1 = xk + f(xx+1, tk+1)∆t . (3)

This is the backward Euler method. To use it, we have to solve the equation xk1
−

f(xk+1, tk+1)∆t = xk for xk+1. Sometimes it is easy to do this. From a mathematical
point of view, the methods seem be be based on the same kind of approximation and
therefore would have a comparable accuracy. It is not hard to show that if ∆t → 0 and
n → ∞ with n∆t = T fixed, then either (2) or (3) leads to xn → x(T ). This exercise
explores what happens when we apply these two methods to the stochastic differential
equation

dX = σXdW , X(0) = 1 . (4)

The forward and backward Euler approximations are

Xk+1 = Xk + σXk∆Wk , (5)

and
Xk+1 = Xk + σXk+1∆Wk , (6)

where ∆Wk = W (tk+1) − W (tk).

(a) Show that

1 + ǫ = exp(ǫ − 1

2
ǫ2 +

1

3
ǫ3 − 1

4
ǫ4 + O(ǫ5)) (7)

Hint: Use the Taylor series for log.
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(b) Derive a formula of the type

Xn = exp

(

n−1
∑

k=0

∆Wk −
1

2

n−1
∑

k=0

+ ∗ ∗ ∗ − ∗ ∗ ∗ +
n−1
∑

k=0

O
(

|∆Wk|5
)

)

(c) Neglecting the O
(

|∆Wk|5
)

term, calculate the limit as ∆t → 0 and n → ∞ with
n∆t = T fixed of each of the first four sums in the exponent.

(d) Show that this is the solution of (4) we had in class.

(e) Repeat steps (b), (c), and (d) for the backward Euler method (6) to see what Xn

converges to.

2. We know that
√

t is the order of magnitude of W (t) in general. One manifestation
of this is that the distribution of W (t)/

√
t is independent of t (in particular, it’s

standard normal for any t). It should not be surprising that it is possible to show that
(W (t)/

√
t)/

√
t = W (t)/t → 0 as t → ∞. Use this to show that the solution of (4)

satisfies X(t) → 0 as t → ∞. Remember that X(t) is a martingale and E[X(t)] = 1
for all t.

3. Suppose W (t) is a Brownian motion and f(W (t), t) is a martingale. Show that f
satisfies the backward heat equation. Use this to show that if f(x, T ) = V (x), then
f(x, t) = Ex,t[V (W (T ))]. Find f(x, t) when V (x) = eiξx. What does this say about
the solution to this backward equation with oscillatory final values as we move away
from the final time? How does this behavior depend on the frequency of oscillation?

4. Here is a similar approach to another backward equation in the notes, but different
from the approach there.

(a) Let Y (t) =
∫ T
t V (W (s))ds. Show that dY = −V (W (t))dt in the sense of Ito.

(b) What PDE does f(x, t) have to satisfy in order for f(W (t), t) + Y (t) to be a
martingale?

(c) What PDE does

f(x, t) = Ex,t

[

∫ T

t
V (W (s))ds

]

satisfy? What are its final conditions?

(d) Find the solution to the PDE with final conditions when V (x) = x2. Hint: For
each t, the solution is a polynomial of degree 2.

(e) Calculate Ex,t

[

∫ T
t W (s)2ds

]

directly using properties of Brownian motion. You
should get the same answer.
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