
Stochastic Calculus, Spring, 2007 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2007/)

Assignment 11.

Due April 12.
Revised (extra information in (2c) added) April 9, (2c) fixed again April 10.

1. Let X be a single component random variable with E[X] = 0, E[X2] = σ2, and
E[X4] = µ4 < ∞. Define the Sn by

Sn =
1

n

n∑

k=1

Xk ,

where the Xk are independent samples of X. The strong law of large numbers states
that Sn → 0 as n → ∞. Kolmogorov gave a beautiful proof assuming only that
E[|X|] < ∞, This exercise is the first step in that direction.

(a) Show that E[S2
n] = 1

n
σ2.

(b) Show that

E[S4
n] = 3

n(n − 1)

n4
σ4 +

1

n3
µ4 . (1)

(c) This implies two things. First, E[S4
n] ≈ 3

n2 σ
4 for large n. Show that this conclusion

is consistent with the central limit theorem.

(d) Second, E[S4
n] ≤ C 1

n2 for all n. Use this, the fact that
∑

n>0
1
n2 < ∞, and the

Borel Cantelli type lemma (not the actual Borel Cantelli lemma, which is more
complicated) of paragraph 1.13 of lecture 7 to show that Sn → 0 as n → ∞. Hint:
if S4

n → 0 then Sn → 0 (why?).

2. Suppose dX = a(t)dt + b(t)dW (t) where a(t) and b(t) are adapted and bounded.
Assume also that for s > 0

E
[
(b(t + s) − b(t))2 | Ft

]
≤ Cs . (2)

The quadratic variation of X is

〈X〉(T ) = lim
∆t→0

∑

tk≤T

(X(tk+1) − X(tk))
2

. (3)

Define Ym(T ) to be the sum on the right side of (3) when ∆t = 2−m. This exercise
(with slightly less than 100% rigor) shows that

Ym(T ) →
∫ T

0
b(t)2dt as m → ∞ .
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(a) Assuming a and b are bounded, use the Ito isometry formula and Cauchy Schwarz
to show that if s > 0 then

E
[
(X(t + s) − X(t))2

]
≤ Cs .

if s ≤ 1.

(b) Use the result of part (a) to show that if s > 0 then

E
[
(X(t + s) − X(t))2 | Ft

]
= b2(t)s + O(s2) .

Hints: The main contribution comes from the bdW term, so ignore the adt at
first, then figure why it contributes only to the O(s2) term. With only b, write

∫ t+s

t
b(u)dW (u) =

∫ t+s

t
b(t)dW (u) +

∫ t+s

t
(b(u) − b(t))dW (u) .

The Ito isometry formula together with (2) shows that the second term is smaller
than the first.

(c) Define
Rk = (X(tk+1) − X(tk))

2 − b(tk)
2∆t .

The difference between Ym(T ) and the Riemann sum
∑

tk≤T

b(tk)
2∆t

is Sm =
∑

Rk. Show that E[Sm]2 ≤ CT∆t = CT2−m. It is difficult to show
E[(X(tk+1) − X(tk))

4 | Ftk ] ≤ C∆t2. You may assume this fact.

(d) Use our Borel Cantelli type argument to show that Sm =
∑

Rk → 0 as m → ∞.

(e) Use the fact that Riemann sums converge to integrals:1

∑

tk≤T

b(tk)
2∆t →

∫ T

0
b(t)2dt as m → ∞ .

to conclude that the limit in (3) satisfies

〈X〉(T ) =
∫ T

0
b(t)2dt .

3. This is an example of the Feynman–Kac formula.

(a) Consider the backward equation

∂tf +
1

2
∂2

xf + γxf = 0 . (4)

Show that if f(x, T ) = V (x) = eαx, then f(x, t) = eA(t)x+B(t). Hint: just plug it
in and find equations for A and B. Since the solution of the backward equation
is unique, this will be the one and only solution.

1We do not prove that here, but it is in any beginning analysis or theoretical advanced calculus book.
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(b) Suppose

V (x) =
1

2π

∫
eipxV̂ (p)dp .

Write an integral formula for f(x, t). This is the source of some of the more com-
plicated “explicit” solutions to certain option pricing problems. These solutions
are not terribly explicit because there is no formula for the Fourier integral.

(c) Write a formula for f roughly of the form

f(x, t) ≈ E

[

exp

(

αW (T ) + γ

∫ T

t
W (s)ds

)]

.

Note that the exponent is a Gaussian random variable with a mean and variance
that depend on x and t. Use the formula for the expected value of exp (µ + σZ)
to evaluate the expectation. Here, Z ∼ N (0, 1) is a standard normal. Check that
the formulas still hold when the parameters are complex numbers. The answer
should be the same as part (a). This uses a form of the Feynman Kac formula
that is slightly more general than the version in the notes, so you might want to
review the argument to check that it applies in this case. In particular, make sure
you understand why f(x, t) → V (x) as t → T .
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