
Stochastic Calculus, Spring, 2007 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2007/)

Assignment 12. Due April 19. Corrections April 18: 1(d) and (e) pk

changed to pn, clarification on the double role of p in question 4, (2a)

corrected e−T/τ became e−t/τ , (3) Rn replaced by Xn

1. Let Sn be a sequence of random variables. There are several ways to interpret the

statement Sn → 0 as n → ∞. Convergence in probability, written Sn
P
→ 0, is the

statement that for an ǫ > 0 P (|Sn| > ǫ) → 0 as n → ∞. If you are planning to choose
a single large n and are hoping that Sn is close to zero, this int the kind of convergence
you need. A stronger kind of convergence is almost sure convergence. We say Sn → 0
almost surely (abbreviated a.s.) if P (Sn → 0 as n → ∞) = 1. You might be interested
in this kind of convergence if you are going to use Sn for many different values of n
and you need all of them to be small. This exercise and the next illustrate that it is
easier to know a single Sn is close to zero than to know many of them are.

Let Xk be independent Bernoulli random variables with pk = P (Xk = 1) and 1− pk =
P (Xk = 0). Let M be the number of k with Xk = 1. If M < ∞, let N be the largest
k with Xk = 1. Take N = ∞ if M = ∞.

(a) Show that if pk > 0 is a sequence of numbers with
∞
∑

k=1

pk = ∞, then for any

N > 0,
∞
∑

k=N

pk = ∞.

(b) Show that Xn
P
→ 0 as n → ∞ if and only if pn → 0 as n → ∞.

(c) Show that M < ∞ is equivalent to Xn → 0 as n → ∞. Hint: the only way for a
Bernoulli to be close to zero it to be equal to zero.

(d) Show that if
∑

n>0

pn < ∞, then Xn → 0 as n → ∞ a.s. This is the actual Borel

Cantelli lemma. Hint: E(M) =
∑

n>0

pn < ∞.

(e) Show that if
∑

n>0

pn = ∞, then the Xn do not converge to 0 as n → ∞ almost

surely. This sometimes is called the converse of the Borel Cantelli lemma, but
that is not strictly correct since the actual lemma does not require the Xn to be
independent while this does. Hint: Let AN be the event that Xk = 0 for all k ≥ N .
If ω is an outcome with Xn → 0 as n → ∞, then ω ∈ AN for some N (why?). If
P (AN) = 0 for all N then P (∪NAN) = 0 (why?), so P (Xn → 0) = 0. For any
N > 0, P (XN = 0) = (1− pN), P (XN = 0 and XN+1 = 0) = (1− pN)(1− pN+1),
etc. The probability that there are no Xk = 1 for N ≤ k ≤ N + n is (show
1 − t ≤ e−t if t ≥ 0)

N+n
∏

k=N

(1 − pk) < exp

(

−
N+n
∑

k=N

pk

)

→ 0 ,

1

as n → ∞.

2. Let Tn be independent exponential random variables with τn = E[Tn].

(a) Show that P (Tn > t) = e−t/τn .

(b) Show that Tn
P
→ 0 as n → ∞ if and only if τn → 0 as n → ∞. Hint: use part (a).

(c) Find a specific sequence τn so that Tn
P
→ 0 as n → ∞ but, with probability 1,

lim
n→∞

Tn does not exist. Hint: Use part (a) and the reasoning of question 1, part

(e).

3. One advantage of the weak solution point of view is that it makes it possible to do
things like this. Suppose X1, . . . , Xn are n independent standard Brownian motions
and

R(t) =
(

X2
1 + · · ·+ X2

n

)1/2
.

(a) Compute dR using Ito’s lemma, the version for f(W (t), t), where W (t) is an n
component standard Brownian motion.

(b) Use the result of part (a) to calculate a(r) and b(r) so that

E [R(t + ∆t) − R(t) | Ft] = a(R(t))∆t + O
(

∆t2
)

E
[

(R(t + ∆t) − R(t))2 | Ft

]

= b(R(t))2∆t + O
(

∆t2
)

(c) Use the result to express R(t) as the weak solution of the SDE dR = a(R)dt +
b(R)dW .

4. Another advantage of the weak solution point of view is that you can make diffusion
approximations to discrete processes by simple scalings and a little algebra. Consider
the urn process for large n and fixed p. Let X(k) be the number of green balls in the
urn after k steps. We want to define a diffusion process, Y (t) that is an approximation
to the X process. This involves scalings, changing the X and time scales by powers
of n so that the rescales process, Y (t), has order one changes in order one time. Let
Yn(t) be X(k) rescaled. The convergence theorem (which we don’t prove) says that
the probability measure in path space for Yn(t) converges in the weak sense (which we
do not define) to the probability measure for Y (t).

We have to rescale in in x and t. That is, we choose Yn = CXn−p(X−µ) and ∆t = Ctn
q

and then the stochastic process Yn(k∆t) = CXn−p(X(k) − µ). The X processes are
very different from each other as n → ∞, but simply rescaling to Yn(t) gives processes
that are more and more alike. Added April 18: The scaling exponent p used in defining
Yn has nothing to do with the p used in defining the urn model. It may help to change
the definition to Yn = CXn−r(X − µ) then change part (b) below to: “Choose r and
CX above ...”. Bear this in mind when doing question 5 below.

(a) Define and evaluate µ = limk→∞ E[X(k)] and σ2 = limk→∞ var[(X(k)]. Hint:
look in the notes.

2

(b) Choose p and CX above so that limt→∞ var[Yn(t)] = 1.

(c) Choose q and Ct so that

E
[

Yn(t + ∆t)2 | Y (t) = 0
]

= ∆t .

(d) Find simple expressions for a(y) and b(y) so that

E [Yn(t + ∆t) − Yn(t) | Ft] ≈ a(Yn)∆t + O
(

∆t2
)

E
[

(Yn(t + ∆t) − Yn(t))2 | Ft

]

≈ b(Yn)2∆t + O
(

∆t2
)

Where the approximations become accurate in the limit n → ∞ with Y fixed.
This is the Ornstein Uhlenbeck approximation to the urn process.

5. This exercise asks you to simulate the urn process with various values of n and p to
see that they look nearly the same when rescaled. You should have a program that
simulates the urn process that takes n and p as parameters. Start with X(0) = np,
which is the mean value. Continue the path until the first k with |X(k) − np| >

σ, where σ =
√

np(1 − p) is the standard deviation of the steady state probability
distribution. Output that k, which is the hitting time. The simplest way to keep track
of the k values is to have an array called something like kCount of size, say, kMax.
Start by setting kCount[j] = 0 for all j (this will be for j = 0, . . . , kMax − 1 or
j = 1, . . . , kMax depending on the system you are using.) Every time you simulate a
path and get a random exit time (or hitting time), k, record that time using kCount[k]

= kCount[k] + 1 (or kCount[k]++; in C/C++, or kCount(k) = kCount(k) + 1;

in Matlab). To keep your program from crashing, you should output k = kMax (or
k = kMax − 1) if the path has not hit the boundary by then. You should choose
kMax so that this is rare. Do a run that generates L independent paths and record
the L hitting times. Then create an estimate of the cumulative distribution function
F (j) = P (k ≤ j) as

F (j) ≈
∑

k≤j

kCount(k)/L .

If L is large enough, this will be a reasonably smooth curve. Now choose a p (not too
close to 0 or 1) and run the program for various values of n (not too small) to see that
if you plot F (j) with time rescaled as in question (4), then curves for different values
of n are nearly the same. Do they agree for different p values as well?

3

