
Stochastic Calculus, Spring, 2007 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2007/)

Assignment 13. Due April 26.
Corrections April 24: in 3(c) the integral is dx, not dt. April 26: a formula

in 1b corrected.

1. Let
Y (t) = ρ

(
X2

1 + · · ·+ X2
n

)
, (1)

where the Xk(t) are independent Brownian motions with variance t but Xk(0) 6= 0.
Let u(y, t) be the probability density for Y (t).

(a) Find the value of ρ so that dY =
√

Y dW + adt. Here a is a constant that you
need to identify.

(b) Create a histogram that gives the approximate shape of u(y, 1) using the right
side of (1). Choose a large number, L, say L = 105 or L = 106, depending on
your computer and your patience. Choose a small ∆y, say ∆y = .05 or ∆y = .01.
Define the bin Bj to be the interval Bj = [j∆y, (j + 1)∆y). For each i in the
range 1 ≤ i ≤ L, generate n independent standard normals (Xi,1, . . . , Xi,n) and
set

Yi = ρ
(
(Xi,1 + c)2 + · · ·+ X2

i,n

)
,

with c = 1/
√

ρ so that Yi = 1 if all the Xi,k are zero. We use X1+c instead of X1 in
order to have a normal with mean c and variance one, which means that Y (0) = 1.
You need not store the samples Yi, only the bin counts Hj = # {i with Yi ∈ Bj}.
Let yj = (j + 1

2
)∆y be the center of bin Bj . The histogram estimate of the

probability density is

u(yj, 1) ≈ û(yj, 1) =
1

L∆y
Hj . (2)

Your program will have to have a maximum yj, but it should be very rare to have
a sample larger than about 7. Write your program so that it will not crash if that
should happen.

(c) Write a program to create simulated sample paths from the SDE of part (a)
starting with initial value Y (0) = 1. Estimate the probability density for the
random variable Y (1) using the histogram method from part (b). This requires
you to generate L independent sample paths up to time t = 1 and put the results
in bins. Generate each sample path using the forward Euler method. Choose
a small time step, ∆t, say ∆t = .1, and implement the approximate relation
∆y ≈ a∆t +

√
Y ∆W by

Ym+1 = Ym + a∆t +
√

Ym

√
∆tZm , (3)
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where the Zm are independent standard normals. Explain why the distribution
of

√
∆tZm is the same as the distribution of ∆W = W (tm+1) − W (tm). Here

tm = m∆t and Ym is the stochastic approximation to Y (tm). Take Y0 = 1. The
estimate of Y (1) is Ym with tm = 1. Plot the estimates of the probability density
make by simulating sample paths and the estimates from part (b) on the same
graph to compare.

There are two sources of error, statistical and inexact sample paths. The statistical
error is reduced by increasing L. The sample paths are made more accurate by
reducing ∆t. The harder you push your computer, the better will be the agreement
between the two curves.

(d) Show that the approximate time step formula (3) has the properties that

E[∆Y | Fm] = a∆t

E[∆Y 2 | Fm] = Ym∆t (as it is supposed to be)

E[∆Y 4 | Fm] = O
(
∆t2

)
.

This is the reason the distribution of the approximate sample paths (3) converges
to the distribution of sample paths of the SDE as ∆t → 0.

2. An Ornstein Uhlenbeck process is an adapted process X(t) that satisfies the Ito differ-
ential equation

dX(t) = −γX(t)dt + σdW (t) . (4)

We have to be careful in applying Ito’s lemma because X(t) is not simply a function
of W (t) and t, but it also depends on values of W (s) for s < t.

(a) Examine the definition of the Ito integral and verify that if g(t) is a non random
differentiable function of t, and dX(t) = a(t)dt + b(t)dW (t), with a random but
bounded and nonanticipating b(t), then d(g(t)X(t)) = ġ(t)X(t)dt + g(t)dX(t). It
may be helpful to use the Ito isometry formula (paragraph 1.17 of lecture 7).

(b) Bring the drift term to the left side of (4), multiply by eγt and integrate (using
part a) to get

X(T ) = e−γT X(0) + σ
∫ T

0
e−γ(T−t)dW (t) . (5)

(c) Conclude that if X(0) is Gaussian or deterministic, then X(T ) is Gaussian for
any T .

(d) Use the SDE (4) to find ODEs for µ(t) = E[X(t)] and v(t) = E[X(t)2]. Hint:
d

dt
E[f(X(t), t)]dt = E[fxdX +ftdt+

1

2
fxx(dX)2] = E[fxa+ft +

1

2
fxxb

2]dt. Apply

this with f = x and f = x2.

(e) Use the result of part (d) to show that the probability density for X(T ) has a
limit as T → ∞. Find the limit by computing the mean and variance directly
from the integral (5) using the Ito isometry formula.
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(f) Suppose X(t) is defined and satisfies (4) for t < 0 and is bounded or slowly growing
as t → −∞. Suppose that W (t) is defined for t < 0. Use the reasoning that led
to (5) to derive a formula for X(T ) as a single integral involving Brownian motion
for over all t ≤ T . Show that the formula is identical to the one from Assignment
8, question 3.

(g) Contrast the large time behavior of the Ornstein Uhlembeck process with that of
Brownian motion.

3. In this exercise and the next (next week), we will calculate some solutions of the
backward and forward equations for the Ornstein Uhlenbeck process. We will be able
to check directly that the soltuion to the backward equation is an expected value, the
solution to the forward equation is a probability density, and that the duality relations
hold.

(a) Write the backward equation for f(x, t) = Ex,t[V (X(T )], when X(t) satisfies (4).

(b) Show that the backward equation has (Gaussian) solutions of the form f(x, t) =
A(t) exp(−s(t)(x − ξ(t))2/2). Find the differential equations for A, ξ, and s that
make this work. This is the ansatz method for solving a PDE. You guess the
general form of the solution and see what the parameters have to do to make it
work.

(c) Show that f(x, t) does not represent a probability distribution, possibly by show-
ing that

∫
∞

−∞
f(x, t)dx is not a constant.

(d) What is the large time behavior of A(t) and s(t)? What does this say about
the nature of an Ornstein Uhlenbeck reward that is paid long in the future as a
function of starting position?
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