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Assignment 3.

Given January 25, due February 8.
Objective: Markov chains, II and lattices.

Revised February 2.

1. We have a three state Markov chain with transition matrix
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Some of the transition probabilities are P (1 → 1) = 1
2
, P (3 → 1) = 1

3
, and P (1 →

2) = 1
4
. Let τ = min(t | Xt = 3). Suppose that at time t = 0, all states are equally

likely.

(a) Consider the quantities u(j, t) = P (X(t) = j and τ > t). Find a matrix evolution
equation for a two component vector made from the u(j, t) and a submatrix, P̃ ,
of P .

(b) Solve this equation using the the eigenvectors and eigenvalues of P̃ to find a
formula for m(t) = P (τ = t).

(c) Use the answer of part (b) to find E[τ ]. It might be helpful to use the formula

∞∑

t=1

tP (τ = t) =
∞∑

t=1

P (τ ≥ t) .

Verify the formula if you use it.

(d) Consider the quantities f(j, t) = P (τ ≥ t | X(0) = j). Find a matrix recurrence
for them.

(e) Use the matrix method to find a formula for f(j, t).

2. This problem explores a Markov chain observed at random times, and reviews some
linear algebra in the process.

(a) Suppose A is an n × n matrix with ‖A‖ < 1 (Any matrix norm will do.). We
write At for A to the power t, not the transpose of A. If t = 0, then At = I, the
identity matrix. Show that

∞∑

t=0

At = (I − A)−1
.

Hint: this is the same as

(I − A)
(
I + A + A2 + · · ·

)
= I .
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(b) Let P be the transition matrix for a Markov chain. Let f = (f1, . . . , fn)
∗ be an n

component column vector (writing f ∗ for the transpose of f). The max norm, or
L∞ norm, of f is

‖f‖L∞ = max
k

|fk| .

Show that if g = Pf , then ‖g‖L∞ ≤ ‖f‖L∞. This is essentially the maximum
principle we did in class. Show that if f = 1 (the vector with all components
equal to one), then ‖g‖L∞ = ‖f‖L∞ This implies that ‖A‖L∞ = 1.

(c) Suppose P1 and P2 are two n × n transition matrices. Suppose we toss a coin
that gives H with probability r and use P1 if H and P2 otherwise. Show that the
resulting transition matrix is rP1 + (1 − r)P2.

(d) Suppose τ (the Greek letter “tau”) is a geometric random variable with parameter
r. That means that τ is a non-negative integer with P (τ = 0) = r, P (τ = 1) =
(1 − r)r, P (τ = 2) = (1 − r)2r, etc. We get τ by tossing a coin (independent
tosses) until the first H . Show that τ has the property that, for all t ≥ 0,
P (τ = t | τ ≥ t) = P (τ = 0). We interpret this by thinking of τ as the time
something breaks. If it has not broken before time t, it as good as new.

(e) Suppose we run a Markov chain starting with state X
(0)
0 = Y0 using transition

matrix P and let Y1 = X(0)
τ , then run the P Markov chain again with X

(1)
0 = Y1

and let Y2 = X(1)
τ (independent of X(0)), and in this way create a path Y =

(Y0, Y1, . . .). Show that Y is a Markov chain and find a formula for its transition
matrix in terms of P and r. Hint: use parts (a), (c), and (d).

(f) Let

P =

(
.8 .2
.2 .8

)

be the transition matrix for a two state Markov chain. Suppose X0 = 1. Find a
simple explicit formula for u(1, t) = P (Xt = 1). Hint compute the first few by
hand until you see the general pattern.

(g) Combine the formulas from part (f) and part (d) to get a formula for P (Xτ = 1 |
X0 = 1), assuming r = 1

2
.

(h) Do the matrix inversion of parts (a) and (e) to recompute the result of part (g).
The answers should be the same.

3. This exercise reviews more linear algebra and explains how to create a martingale that
is useful for proving the Central Limit Theorem for Markov Chains. The rank of a
matrix is the dimension of the vector space spanned by its columns. If A is an n × n

matrix, the row kernel of A, Kr, (also called the left kernel, or the kernel of A∗) is the
vector space of row vectors u so that uA = 0. If A has rank n− r, if Kr has dimension
r. The column kernel (or simply the kernel) of A, Kc, is the vector space of column
vectors, f so that Af = 0. A theorem of linear algebra says that the dimensions of
Kc and Kr are equal. If Kr is nontrivial, then there are vectors g so that there is no
solution to the equations Af = g. If u ∈ Kr, then uAf = ug. Since the left side is
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zero, the right side also must be zero. A theorem of linear algebra says that Af = g

has a solution if ug = 0 for all u ∈ Kr, and that uA = v has a solution if vf = 0 for
all f ∈ Kc. If A, has rank n − 1, then Kr and Kc are one dimensional. That means
that there is a unique row vector, u, so that uA = 0, unique in the sense that if v is
another row vector with vA = 0 then v is a multiple of u. If

(a) Let P be an n × n matrix and λ a real or complex number. Use the above
discussion (i.e., not determinants) to show that there is a non-zero row eigenvector
with uA = λu if and only if there is a non-zero column eigenvector with Af = λf .
Hint: take A = P − λI.

(b) Let P be the transition matrix of a Markov chain and 1 the column vector with
all entries equal to one. Show that P1 = 1. If the Markov chain is nondegenerate

(definition given later), then P − I has rank n − 1. Show that in this case, there
is a unique row vector, π, with πP = π and

∑n
k=1 πk = π1 = 1 (the right side

being the number one). Hint: You may assume that if π has πP = π then all the
components of π have the same sign. This π is a probability distribution on the
state space. Show that if P (Xt = j) = πj , then P (Xt+1 = j) = πj , i.e. that π a
steady state probability distribution for the Markov chain.

(c) Let f be a function defined on the state space of a Markov chain, and let

St =
t∑

t=0

f(Xs) .

Show that if Eπ[f(X)] =
∑

j πkf(j) = 0, then there is a function g, defined on the
state space, so that Mt = St−g(Xt) is a martingale. The definition of a martingale
is that E[Mt+1 | Ft] = Mt. In this case, Mt+1 = Mt +f(Xt+1)−(g(Xt+1)−g(Xt)),
so the martingale condition is that

E [f(Xt+1) | Xt = j] = E [g(Xt+1) − g(Xt) | Xt = j] for all j.

Formulate this as a system of equations for the unknown column vector, g.
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