Stochastic Calculus, Spring, 2007 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2007/)
Assignment 4.

February 15.
Objective: See it with your own eyes.

1. Write a procedure that simulates a random walk with parameters x = X(0), L, a, b,
and c. One call to this procedure should produce one path and report 7 and X(7),
which can be 0 or L. If you have a uniform random number generator' U = rand(),
you can simulate a random walk by: © -z —1i#fU < ¢,z -z if c < U < c+ b,
and z — = 4 1 otherwise. You can estimate the probability that X (7) = 0 by doing N
simulations, letting M be the number of simulations with X (7) = 0 and using M/N as
the estimate of the probability. In the same way, you can estimate E[r] by averaging
the 7 values from N simulations.

(a) Let w(z) = P(X(1) =0| X(0) = z). With L =20, a = b = ¢ = 3, estimate the
numbers w(z) for each « € [1, L —1]. Plot the estimates and the theoretical value
on the same plot. Use an N value that is big enough to give good agreement.

(b) Repeat part (a) with L = 20, a = %, and b = ¢ = i. You will have to complete
the theoretical calculation of w(zx) in the notes. Comment on the difference in the
shapes of the curves here and in part (a).

(c¢) Estimate f(x) = E[r | X(0) = 2] with L =50, and a = b = ¢ =
estimates and the theoretical values on the same plot.

5. Plot the

(d) Repeat part (c) with a = %, and b =c = i. Can you explain the rough shape of
the result using the idea of drift as a constant speed? Compare the size of f here
and in part (c). Which is larger and why?

2. Write a program to solve the forward equation for a random walk. Use absorbing
boundary conditions at k = 0 and k = L. Take L = 200. Take a = b =c = % Start
with initial conditions (k) and solve the forward equation up to time 7" = 1000. Take
uo(k) corresponding to X (0) = 100.

(a) Compute and plot H(t) = 1 — X ¢ u(k,t). This is the probability of hitting the
boundary before time t. How likely is this with the present parameters? Note
that the random walk takes about %T = 667 jumps (two thirds of the time steps
involve X — X +1 or X — X — 1), and it takes 100 jumps to get from the
starting point to the boundary.

(b) Make a plot of u(k,T) as a function of k. How likely is it for X (7") to be close to
the boundary?

IThis is how it looks in C/C++. It is slightly different in Matlab or VBA or R.



(c) With the same initial condition as part (a), compute and plot

u(k,t) — u(k —1,t))”

IIMh

If you feel ambitious, look for a power law S(t) =~ C - t~P (for large t), possibly by
plotting log S.

(d) Compute R(t) = Yy S(t') and plot this to see that lim; .. R(t) = Y72, 5(t)
exists and is finite. If you estimated a power law in part (c), this will be consistent.

You may program in any language you want. Below is what some of the code might
look like in C/C++. If you program in Matlab, remember that arrays start with index
1, not index 0. What is called u[k] in C/C++ would be called u(k+1) in Matlab. The
trick for absorbing boundary conditions (u(0,t) = u(L,t) = 0) is to set u(0) = u(L) =0
at the beginning and never change these values. The loops run from k=1tok=L—1
(k = 2 to k = L in Matlab) to avoid changing «(0) or u(L). Also, we use two one
dimsional arrays u and uNew instead of a two dimensional array u. This uses much less
computer memory. In C/C++, the main loop could be

double ul[L+1], uNew[L+1];
// create initial conditions

ul0] = 0; uNew[0] = 0; ul[L] = 0; uNew[L] = 0; // Boundary values never change
for (t =0; t <T; t++ ) { // The time step loop
for (k =1; k < L-1; k++ ) // Compute the new u values.
uNew[k] = axul[k-1] + b*xulk] + c*xul[k+1];
for ( k = 1; k < L-1; k++ ) // Copy them back to the old array.
ulk] = uNewl[k];



