
Stochastic Calculus Notes, Lecture 1
Last modified January 19, 2007

1 Overview

1.1. Introduction: The term stochastic means “random”. Because it usually
occurs together with “process” (stochastic process), it makes people think of
something something random that changes in a random way over time. The term
calculus refers to ways to calculate things or find things that can be calculated
(e.g. derivatives in the differential calculus). Stochastic calculus is the study of
stochastic processes through a collection of powerful ways to calculate things.
When we have a question about the behavior of a stochastic process, we will
look for something we can calculate that answers our question.

1.2. Organization: We start in the discrete setting, where the tools are
summations and matrix multiplication and the main concepts can be displayed
clearly. We then move to continuous processes in continuous time where things
are calculated using integrals, either ordinary integrals in Rn or abstract in-
tegrals in probability space. It is impossible (and beside the point if it were
possible) to treat these matters with full mathematical rigor in these notes.
The reader should get enough to distinguish mathematical right from wrong in
cases that occur in practical applications.

1.3. Discrete and continuous processes: Results in the continuous setting
often are simpler than the corresponding result in the discrete setting, even
though the continuous setting requires more foundation. This is the same as in
ordinary integral calculus. For example, consider the relationship between the
sum of kp and the integral of xp. The first sum formulas are

∑n

k=0 k = 1
2n2+ 1

2n,
and

∑n

k=0 k2 = 1
3n3 + 1

2n2 + 1
6n. The complexity increases for increasing p. By

contrast, the integral formula is the universally simple
∫ n

x=0 xp dx = 1
p+1np.

1.4. Backward and forward equations: Backward equations and forward
equations are perhaps the most useful tools for getting information about stochas-
tic processes. Roughly speaking, suppose f = E[·] is an expectation value we
want to know. For example f could be the expected value of a portfolio after fol-
lowing a proposed trading strategy. Rather than compute f directly, we define
an array of related expected values, f(x, t). The tower property implies rela-
tionships, backward equations or forward equations, among these values that
allow us to compute some of them in terms of others. Proceeding from the few
known values (initial conditions or final conditions, and possibly boundary con-

ditions), we eventually find the f we first wanted. For discrete time and space,
the equations are matrix equations or recurrence relations. For continuous time
and space, they are partial differential equations of diffusion type.
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1.5. Diffusions and Ito calculus: The Ito calculus is a tool for studying
continuous stochastic processes in continuous time. If X(t) is a differentiable
function of time, then ∆X = X(t+∆t)−X(t) is of the order of1 ∆t. Therefore
∆f(X(t)) = f(X(t + ∆t)) − f(X(t)) ≈ f ′∆X to this accuracy. For a diffusion
process, ∆X is roughly of the order of

√
∆t, so ∆f ≈ f ′∆X + 1

2f ′′∆X2 has an
error smaller than ∆t. In the special case where X(t) is Brownian motion, it is
often permissible (and the basis of the Ito calculus) to replace ∆X2 by its mean
value, which roughly is proportional to ∆t.

1.6. Exercises: Each section has a number of exercises. These are important
parts of the text. You should read them even if you don’t have time to do them.

2 Discrete probability

This section covers the basic ideas of discrete probability and conditional ex-
pectation. This might seem dry now, but examples are coming. We develop
the modern view of stochastic processes, partially revealed information, and
conditional expectation. These are are easy to understand in the discrete set-
ting because they are simple restatements of classical conditional expectation.
The modern formalism is not always helpful for simple problems, but it can be
just the thing for understanding more subtle stochastic processes and decision
problems under incomplete information.

2.1. Probability space: In abstract probability, we imagine that there is
some experiment or trial we can do to produce a random outcome, which is
called ω. The set of all possible outcomes is Ω, which is the probability space.
The Ω is discrete if it is finite or countable (able to be listed in a single infinite
numbered list). We discuss only this case here. The outcome ω is often called
a random variable. I avoid that term because I (and most other people) want
to call functions X(ω) random variables, see below.

2.2. Probability: The probability of a specific outcome is P (ω). We always

assume that P (ω) ≥ 0 for any ω ∈ Ω and that
∑

ω∈Ω

P (ω) = 1. The interpreta-

tion of probability is a matter for philosophers, but we might say that P (ω) is
the probability of outcome ω happening, or the fraction of times event ω would
happen in a large number of independent trials. The philosophical problem is
that it may be impossible actually to perform a large number of independent
trials. People also sometimes say that probabilities represent our often subjec-
tive (lack of) knowledge of future events. Probability 1 means something that
is certain to happen while probability 0 is for something that cannot happen.
“Probability zero ⇒ impossible” is only strictly true for discrete probability.

2.3. Event: An event is a set of outcomes, which is the same as a subset of

1This means that there is a C so that |X(t + ∆t − X(t)| ≤ C |∆| for small ∆t.
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Ω. The probability of an event is the sum of the probabilities of the outcomes
that make up the event

P (A) =
∑

ω∈A

P (ω) . (1)

Usually, we specify an event in some way other than listing all the outcomes
in it (see below). We do not distinguish between the outcome ω and the event
that that outcome occurred A = {ω}. That is, we write P (ω) for P ({ω}) or
vice versa. This is called “abuse of notation”: we use notation in a way that is
not absolutely correct but whose meaning is clear.

2.4. Countable and uncountable (technical detail): A probability space (or
any set) that is not countable is called “uncountable”. This distinction was
formalized by the late nineteenth century mathematician Georg Cantor, who
showed that the set of (real) numbers in the interval [0, 1] is not countable. We
call a finite or countable probability space discrete and an uncountable prob-
ability space2 continuous. An example of continuous probability is [0, 1] with
uniform probability density. The probability formula (1) is not applicable in
that case because P (ω) = 0 for any ω ∈ [0, 1]. Roughly speaking, the difference
between continuous and discrete probability is the difference between integrals
and sums.

2.5. Example: Toss a coin 4 times. Each toss yields either H (heads) or
T (tails). The possible outcomes are TTTT, TTTH, TTHT, TTHH, THTT,
. . ., HHHH. The number of outcomes is #(Ω) = |Ω| = 16. If each outcome is
equally likely, P (ω) = 1

16 for each ω ∈ Ω. If A is the event that the first two
tosses are H, then

A = {HHHH, HHHT, HHTH, HHTT} .

There are 4 elements (outcomes) in A, each having probability 1
16 Therefore

P (first two H) = P (A) =
∑

ω∈A

P (ω) =
∑

ω∈A

1

16
= 4 · 1

16
=

1

4
.

2.6. Set operations: Events are sets, so set operations apply to events. If A
and B are events, the event “A and B” is the set of outcomes in both A and
B. This is the set intersection A ∩ B. The union A ∪ B is the set of outcomes
in A or in B (or in both). The complement of A, Ac, is the event “not A”, the
set of outcomes not in A. The empty event is the empty set, the set with no
elements, ∅. The probability of ∅ is zero because the sum (1) that defines it has
no terms. The complement of ∅ is Ω. Events A and B are disjoint if A∩B = ∅.
Event A is contained in event B, A ⊆ B, if every outcome in A is also in B.
For example, if the event A is as above and B is the event that the first toss is
H, then A ⊆ B.

2We also should call it discrete if there is a countable event A ⊂ Ω with P (A) = 1.
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2.7. Basic facts: Each of these facts is a consequence of the representation (1).
First P (A) ≤ P (B) if A ⊆ B. Also, P (A) + P (B) = P (A∪B) if P (A∩B) = 0,
but not otherwise. If P (ω) 6= 0 for all ω ∈ Ω, then P (A ∩ B) = 0 only if A and
B are distoint. Clearly, P (A) + P (Ac) = P (Ω) = 1.

2.8. Conditional probability: The probability of outcome A given that B has
occurred is the conditional probability of A given B,

P (A | B) =
P (A ∩ B)

P (B)
. (2)

This is the fraction of B outcomes that are also A outcomes. The formula is
called Bayes’ rule. It is often used to calculate P (A ∩ B) once we know P (B)
and P (A | B). The formula for that is P (A ∩ B) = P (A | B)P (B).

2.9. Independence: Events A and B are independent if P (A | B) = P (A).
That is, knowing whether or not B occurred does not change the probability of
A. In view of Bayes’ rule, this is expressed as

P (A ∩ B) = P (A) · P (B) . (3)

For example, suppose A is the event that two of the four tosses are H, and B
is the event that the first toss is H . Then A has 6 elements (outcomes), B has
8, and, as you can check by listing them, A ∩ B has 3 elements. Since each
element has probability 1

16 , this gives P (A ∩ B) = 3
16 while P (A) = 6

16 and
P (B) = 8

16 = 1
2 , and (3) is satisfied. Note that if C is the event that 3 of the

4 tosses are H (instead of 2 for A), then P (C) = 4
16 = 1

4 and P (B ∩ C) = 3
16 ,

because
B ∩ C = {HHHT, HHTH, HTHH}

has three elements. Bayes’ rule (2) gives P (B | C) = 3
16/ 3

4 = 3
4 . Knowing that

there are 3 heads in all raises the probability that the first toss is H from 1
2 to

3
4 .

2.10. Working with conditional probability: Let us fix the event B, and dis-
cuss the conditional probability P (1)(ω) = P (ω | B), which also is a probability
(assuming P (B) > 0). There are two slightly different ways to discuss P (1).
One way is to take B to be the probability space and define

P (1)(ω) =
P (ω)

P (B)

for all ω ∈ B. Since B is the probability space for P (1), we do not have to define
P (1) for ω /∈ B. This P (1) is a probability because P (1)(ω) ≥ 0 for all ω ∈ B
and

∑

ω∈B P (1)(ω) = 1. The other way is to keep Ω as the probability space
and set the conditional probabilities to zero for ω /∈ B. If we know the event B
happened, then the probability of an outcome not in B is zero.

P (ω | B) =

{

P (ω)
P (B) for ω ∈ B,

0 for ω /∈ B.
(4)
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Either way, we restrict to outcomes in B and “renormalize” the probabilities
by dividing by P (B) so that they again sum to one. Note that (4) is just the
general conditional probability formula (2) applied to the event A = {ω}.

We can condition a second time by conditioning P (1) on another event, C.
It seems natural that P (1)(ω | C), which is the conditional probability of ω
given that C, occurred given that B occurred, should be be the P conditional
probability of ω given that both B and C occurred. Bayes’ rule verifies this
intuition:

P (1)(ω | C) =
P (1)(ω)

P (1)(C)

=
P (ω | B)

P (C | B)

=
P (ω)

P (B)
P (C ∩ B)

P (B)

=
P (ω)

P (B ∩ C)

= P (ω | B ∩ C) .

The conclusion is that conditioning on B and then on C is the same as condi-
tioning on B∩C (B and C) all at once. This tower property underlies the many
recurrence relations that allow us to get answers in practical situations.

2.11. Algebra of sets and incomplete information: A set of events, F , is an
algebra if

i: A ∈ F implies that Ac ∈ F .

ii: A ∈ F and B ∈ F implies that A ∪ B ∈ F and A ∩ B ∈ F .

iii: Ω ∈ F and ∅ ∈ F .

We interpret F as representing a state of partial information. We know whether
any of the events in F occurred but we do not have enough information to
determine whether an event not in F occurred. The above axioms are natural
in light of this interpretation. If we know whether A happened, we also know
whether “not A” happened. If we know whether A happened and whether B
happened, then we can tell whether “A and B” happened. We definitely know
whether ∅ happened (it did not) and whether Ω happened (it did). Events in
F are called measurable or determined in F .

2.12. Example 1: Suppose we learn the outcomes of the first two tosses but
not the last two. One event measurable in F is (with some abuse of notation)

{HH} = {HHHH, HHHT, HHTH, HHTT} .
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An example of an event not determined by this F is the event of no more than
one H:

A = {TTTT, TTTH, TTHT, THTT, HTTT} .

Knowing just the first two tosses does not tell you with certainty whether the
total number of heads is less than two.

2.13. Example 2: Suppose we know only the results of the tosses but not the
order. This might happen if we toss 4 identical coins at the same time. In this
case, we know only the number of H coins. Some measurable sets are (with an
abuse of notation)

{4} = {HHHH}
{3} = {HHHT, HHTH, HTHH, THHH}

...

{0} = {TTTT}

The event {2} has 6 outcomes (list them), so its probability is 6 · 1

16
=

3

8
. There

are other events measurable in this algebra, such as “less than 3 H”, but, in
some sense, the events listed generate the algebra.

2.14. σ−algebra: An algebra of sets is a σ−algebra (pronounced “sigma
algebra”) if it is closed under countable intersections, which means the following.
Suppose An ∈ F is a countable family of events measurable in F , and A = ∩nAn

is the set of outcomes in all of the An, then A ∈ F , too. The reader can
check that an algebra closed under countable intersections is also closed under
countable unions, and conversely. An algebra is automatically a σ−algebra if
Ω is finite. If Ω is infinite, an algebra might or might not be a σ−algebra.3 In
a σ−algebra, it is possible to take limits of infinite sequences of events, just as
it is possible to take limits of sequences of real numbers. We will never (again)
refer to an algebra of events that is not a σ−algebra.

2.15. Terminology: What we call “outcome” is usually called “random
variable”. I did not use this terminology because it can be confusing, in that we
often think of “variables” as real (or complex) numbers. A “real valued function”
of the random variable ω is a real number X for each ω, written X(ω). The
most common abuse of notation in probability is to write X instead of X(ω).
We will do this most of the time, but not just yet. We often think of X as a
random number whose value is determined by the outcome (random variable) ω.
A common convention is to use upper case letters for random numbers and lower
case letters for specific values of that variable. For example, the “cumulative

3Let Ω be the set of integers and A ∈ F if A is finite or Ac is finite. This F is an algebra
(check), but not a σ−algebra. For example, if An leaves out only the first n odd integers,
then A is the set of even integers, and neither A nor Ac is finite.
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distribution function” (CDF), F (x), is the probability that X ≤ x, that is:

F (x) =
∑

X(ω)≤x

P (ω).

2.16. Informal event terminology: We often describe events in words. For
example, we might write P (X ≤ x) where, strictly, we might be supposed to
say Ax = {ω | X(ω) ≤ x} then P (X ≤ x) = P (Ax). For example, if there are
two functions, X1 and X2, we might try to calculate the probability that they
are equal, P (X1 = X2). Strictly speaking, this is the probability of the set of ω
so that X1(ω) = X2(ω).

2.17. Measurable: A function (of a random variable) X(ω) is measurable
with respect to the algebra F if the information in F is enough to determine
the value of X . More precisely, for any number, x, we can consider the event
that X = x, which is Bx = {ω : X(ω) = x}. In discrete probability, Bx will be
the empty set for almost all x values and will not be empty only for those values
of x actually taken by X(ω) for one of the outcomes ω. The function X(ω) is
“measurable with respect to F” if the sets Bx are all measurable. People often
write X ∈ F (an abuse of notation) to indicate that X is measurable with respect
to F . In Example 2 above, the function X = number of H minus number of T
is measurable, while the function X = number of T before the first H is not
(find an x and Bx /∈ F to show this).

2.18. Generating an algebra of sets: Suppose there are events A1, . . .,
Ak that you know. The algebra, F , generated by these sets is the algebra
that expresses the information about the outcome you gain by knowing these
events. One definition of F is that an event A is in F if A can be expressed in
terms of the known events Aj using the set operations intersection, union, and
complement a number of times. For example, we could define an event A by
saying “ω is in A1 and (A2 or A3) but not in A4 or A5”, which would be written
A = (A1 ∩ (A2 ∪ A3)) ∩ (A4 ∪ A5)

c. This is the same as saying that F is the
smallest algebra of sets that contains the known events Aj . Obviously (think
about this!) any algebra that contains the Aj contains any event described by
set operations on the Aj , that is the definition of algebra of sets. Also the sets
defined by set operations on the Aj form an algebra of sets. For example, if A1

is the event that the first toss is H and A2 is the event that both the first two
are H , then A1 and A2 generate the algebra of events determined by knowing
the results of the first two tosses. This is Example 1 above. To generate a
σ−algebra, we may have to allow infinitely many set operations, but a precise
discussion of this would be “off message”.

2.19. Generating by a function: A function X(ω) defines an algebra of sets
generated by the sets Bx of paragraph 17. This is the smallest algebra, F , so
that X is measurable with respect to F . Paragraph 13 gives an example of this.
We can think of F as being the algebra of sets defined by statements about the
values of X(ω). For example, one A ∈ F would be the set of ω with X either
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between 1 and 3 or greater than 4.
We write FX for the algebra of sets generated by X , and ask what it means

that another function of ω, Y (ω), is measurable with respect to FX . The
information interpretation of FX suggests that Y ∈ FX if knowing the value of
X(ω) determines the value of Y (ω). This means that if ω1 and ω2 have the same
X value (X(ω1) = X(ω2)) then they also have the same Y value. Said another
way, if Bx is not empty, then there is some number, u(x), so that Y (ω) = u(x)
for every ω ∈ Bx. This means that Y (ω) = u(X(ω)) for all ω ∈ Ω). Altogether,
saying Y ∈ FX is a fancy way of saying that Y is a function of X . Of course,
u(x) only needs to be defined for those values of x actually taken by the random
variable X .

For example, if X is the number of H in 4 tosses, and Y is the number
of H minus the number of T , then Y (ω) = 2X(ω) − 4 for any ω. That is,
u(x) = 2x − 4.

2.20. Equivalence relation: A σ−algebra, F , determines an equivalence

relation. Outcomes ω1 and ω2 are equivalent, written ω1 ∼ ω2, if the information
in F does not distinguish ω1 from ω2. More formally, ω1 ∼ ω2 if ω1 ∈ A ⇒ ω2 ∈
A for every A ∈ F . For example, in the example of paragraph 13, THTT ∼
TTTH. Because F is an algebra, ω1 ∼ ω2 also implies that ω1 /∈ A ⇒ ω2 /∈ A
(think this through). It is easy to check that any ω has ω ∼ ω (similar to
itself), and, for any three outcomes, ω1 ∼ ω2 and ω2 ∼ ω3 implies that ω1 ∼ ω3

(transitivity). A ∼ relation that has these properties is an equivalence relation.
Any equivalence relation defines equivalence classes. For each ω, the equiv-

alence class Aω is Aω = {ω′ with ω′ ∼ ω}. If Aω = Aω′ , then ω ∼ ω′. In
our case, the equivalence class of outcome ω is the set of outcomes indistin-
guishable from ω using the information available in F . In discrete probability,
equivalence classes are measurable. (Proof: for any ω′ not equivalent to ω in
F , there is at least one Bω′ ∈ F with ω ∈ Bω′ but ω′ /∈ Bω′ . Since there
are (at most) countably many ω′, and F is a σ−algebra, Aω = ∩ω′Bω′ ∈ F .
This Aω contains every ω1 that is equivalent to ω (why?) and only those.)
In the example of paragraph 13, the equivalence class of THTT is the event
ATHTT = {HTTT, THTT, TTHT, TTTH}.

2.21. Partition: A partition of Ω is a collection of events, P = {B1, B2, . . .}
so that every outcome ω ∈ Ω is in exactly one of the events Bk. The σ−algebra
generated by P , which we call FP , consists of events that are unions of events
in P (Why are complements and intersections not needed?). For any parti-
tion P , the equivalence classes of FP are the events in P (think this through).
Conversely, if P is the partition of Ω into equivalence classes for F , then P
generates F . In the example of paragraph 13, the sets Bk = {k} form the par-
tition corresponding to F . More generally, for any random variable, X(ω), the
sets Bx = {ω | X(ω) = x} that are not empty are the partition corresponding
to FX . In discrete probability, partitions are a convenient way to understand
conditional expectation (below). The information in FP is the knowledge of
which of the Bj happened. The remaining uncertainty is which of the ω ∈ Bj
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happened.

2.22. Expected value: A random variable (actually, a function of a random
variable) X(ω) has expected value

E[X ] =
∑

ω∈Ω

X(ω)P (ω) .

(Note that we do not write ω on the left. We think of X as simply a random
number and ω as a story telling how X was generated.) This is the “average”
value in the sense that if you could perform the “experiment” of sampling X
many times then average the resulting numbers, you would get roughly E[X ].
This is because P (ω) is the fraction of the time you would get ω and X(ω) is
the number you get for ω. If X1(ω) and X2(ω) are two random variables, then
E[X1 + X2] = E[X1] + E[X2]. Also, E[cX ] = cE[X ] if c is a constant (not
random).

2.23. Best approximation property: If we wanted to approximate a random
variable, X , (function X(ω) with ω not written) by a single non random number,
x, what value would we pick? That would depend on the sense of “best”. One
such sense is least squares, choosing x to minimize the expected value of (X−x)2.
A calculation, which uses the above properties of expected value, gives

E
[

(X − x)
2
]

= E[X2 − 2Xx + x2]

= E[X2] − 2xE[X ] + x2 .

Minimizing this over x gives the optimal value

xopt = E[X ] . (5)

2.24. Classical conditional expectation: There are two senses of the term
conditional expectation. We start with the original classical sense then turn to
the related but different modern sense often used in discussions of stochastic
processes. Conditional expectation is defined from conditional probability in
the obvious way

E[X |B] =
∑

ω∈B

X(ω)P (ω|B) . (6)

For example, we can calculate

E[#of H in 4 tosses | at least one H] .

Write B for the event {at least one H}. Since only ω =TTTT does not have
at least one H, |B| = 15 and P (ω | B) = 1

15 for any ω ∈ B. Let X(ω) be the
number of H in ω. Unconditionally, E[X ] = 2, which means

1

16

∑

x∈Ω

X(ω) = 2 .
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Note that X(ω) = 0 for all ω /∈ B (only TTTT), so

∑

ω∈Ω

X(ω)P (ω) =
∑

ω∈B

X(ω)P (ω) ,

and therefore

1

16

∑

ω∈B

X(ω)P (ω) = 2

15

16
· 1

15

∑

ω∈B

X(ω)P (ω) = 2

1

15

∑

ω∈B

X(ω)P (ω) =
2 · 16

15

E[X | B] =
32

15
= 2 + .133 . . . .

Knowing that there was at least one H increases the expected number of H by
.133 . . ..

2.25. Law of total probability: Suppose P = {B1, B2, . . .} is a partition of
Ω. The law of total probability is the formula

E[X ] =
∑

k

E[X | Bk]P (Bk) . (7)

This is easy to understand: exactly one of the events Bk happens. The expected
value of X is the sum over each of the events Bk of the expected value of X
given that Bk happened, multiplied by the probability that Bk did happen. The
derivation is a simple combination of the definitions of conditional expectation
(6) and conditional probability (4):

E[X ] =
∑

ω∈Ω

X(ω)P (ω)

=
∑

k

(

∑

ω∈Bk

X(ω)P (ω)

)

=
∑

k

(

∑

ω∈Bk

X(ω)
P (ω)

P (Bk)

)

P (Bk)

=
∑

k

E[X | Bk]P (Bk) .

This fact underlies the recurrence relations that are among the primary tools of
stochastic calculus. It will be reformulated below as the tower property when
we discuss the modern view of conditional probability.

2.26. Decision tree: A decision tree is a model for a sequence of choices, each
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T H

T H T H 3/41/41/21/2

1/3 2/3

3 5 64

Figure 1: A simple decision tree. The probability that the first decision is H is
2
3 . If the first decision is H, the probability that the second one is T is 1

4 . The

payout for decisions TH is V = 4. The payout for HH is V = 6, etc.

dependent on the earlier ones. See Figure 1. The expected payout is

E[V ] = f0 = 3 · P (TT ) + 4 · P (TH) + 5 · P (HT ) + 6 · P (HH)

= 3 · 1

3
· 1

2
+ 4 · 1

3
· 1

2
+ 5 · 2

3
· 1

4
+ 6 · 2

3
· 3

4
= 5 .

Let F be the algebra generated by the first decision. This algebra is generated
by the partition of Ω into two pieces BT = {TT, TH}, and BH = {HT, HH}.
The conditional expectations are

E[V | BT ] = f1(T ) = 3 · P (TT | BT ) + 4 · P (TH | BT )

= 3 · 1

2
+ 4 · 1

2
= 3.5 ,

E[V | BH ] = f1(H) = 5 · P (HT | BH) + 6 · P (HH | BH)

= 5 · 1

4
+ 6 · 3

4
= 5.75 .

The law of total probability gives the overall mean, f0, as the mean of the
conditional means:

f0 = f1(T ) · P (BT ) + f1(H) · P (BH)

5 = 3.5 · 1

3
+ 5.75 · 2

3
(
√

)

2.27. Modern conditional expectation: The modern conditional expectation
starts with an algebra, F , rather than just the set B. It defines a (function of
a) random variable, Y (ω) = E[X | F ], that is measurable with respect to F
even though X is not. This function represents the best prediction (in the least
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squares sense) of X given the information in F . If X ∈ F , then the value of
X(ω) is determined by the information in F , so Y = X .

In the classical case, the information is the occurrence or non occurrence of
a single event, B. That is, the algebra, FB, consists only of the sets B, Bc, ∅,
and Ω. For this FB, the modern definition gives a function Y (ω) so that

Y (ω) =

{

E[X | B] if ω ∈ B,
E[X | Bc] if ω /∈ B.

Make sure you understand the fact that this two valued function Y is measurable
with respect to FB.

Only slightly more complicated is the case where F is generated by a parti-
tion, P = {B1, B2, . . .}, of Ω. The conditional expectation Y (ω) = E[X | F ] is
defined to be

Y (ω) = E[X | Bj ] if ω ∈ Bj , (8)

where E[X | Bj ] is classical conditional expectation (6). A single set B defines
a partition: B1 = B, B2 = Bc, so this agrees with the earlier definition in that
case. More generally, the information in F is which of the Bj occurred. The
modern conditional expectation replaces X with its expected value over that
Bj . This is the expected value of X given the information in F .

2.28. Example of modern conditional expectation: Take Ω to be sequences of
4 coin tosses. Take F to be the algebra of paragraph 13 determined by the num-
ber of H tosses. Take X(ω) to be the number of H tosses before the first T (e.g.
X(HHTH) = 2, X(TTTT) = 0, X(HHHH) = 4, etc.). With the usual abuse
of notation, we calculate (below): Y ({0}) = 0, Y ({1}) = 1/4, Y ({2}) = 2/3,
Y ({3}) = 3/2, Y ({4}) = 4. Note, for example, that because HHTT and HTHT
are equivalent in F (in the equivalence class {2}), Y (HHTT) = Y (HTHT) = 1/4
even though X(HHTT) 6= X(HTHT). The common value of Y is its average
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value of X over the outcomes in the equivalence class.

{0} TTTT
0

expected value = 0

{1} HTTT THTT TTHT TTTH
1 0 0 0

expected value = (1 + 0 + 0 + 0)/4 = 1/4

{2} HHTT HTHT HTTH THHT THTH TTHH
2 1 1 0 0 0

expected value = (2 + 1 + 1 + 0 + 0 + 0)/6 = 2/3

{3} HHHT HHTH HTHH THHH
3 2 1 0

expected value = (3 + 2 + 1 + 0)/4 = 3/2

{4} HHHH
4

expected value = 4

2.29. Best approximation property: We said that the conditional expectation
of random variable X is the best approximation to X that is measurable with
respect to F . This means that Y = E[X | F ] minimizes the mean square
approximation error

E
[

(Y − X)
2
]

.

In other words, if Z ∈ F is any other random variable determined by F ,

E
[

(Z − X)2
]

≥ E
[

(Y − X)2
]

.

In fact, this best approximation property will be the definition of conditional
expectation in situations where the partition definition is not directly applicable.

The best approximation property for modern conditional expectation is a
consequence of the best approximation for classical conditional expectation.
The least squares error is the sum of the least squares errors over each Bk in the
partition defined by F . We minimize the least squares error in Bk by choosing
Y (Bk) to be the average of X over Bk (weighted by the probabilities P (ω) for
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ω ∈ Bk). By choosing the best approximation in each Bk, we get the best
approximation overall.

This can be expressed in the terminology of linear algebra. The set of func-
tions (random variables) X is a vector space with inner product, a Hilbert space.
The inner product is

〈X, Y 〉 =
∑

ω∈Ω

X(ω)Y (ω)P (ω) = E [XY ] ,

so ‖X − Y ‖2
= E

[

(X − Y )2
]

. The set of functions measurable with respect
to F is a subspace, which we call SF . The conditional expectation, Y , is the
orthogonal projection of X onto SF , which is the element of SF that closest to
X in the norm just given.

2.30. Tower property: Suppose G is a σ−algebra that has less information
than F . That is, every event in G is also in F , but events in F need not be in
G. This is expressed simply (without abuse of notation) as G ⊆ F . Consider
the (modern) conditional expectations Y = E[X | F ] and Z = E[X | G]. The
tower property is the fact that Z = E[Y | G]. That is, conditioning in one step
gives the same result as conditioning in two steps. As we said before, the tower
property underlies the backward equations that are among the most useful tools
of stochastic calculus.

The tower property is an application of the law of total probability to condi-
tional expectation. Suppose P and Q are the partitions of Ω corresponding to
F and G respectively. The partition P is a refinement of Q, which means that
each Ck ∈ Q itself is partitioned into events {Bk,1, Bk,2, . . .}, where the Bk,j are
elements of P . Then (see “Working with conditional probability”) for ω ∈ Ck,
we want to show that Z(ω) = E[Y | Ck] (writing Y (Bjk) for the common value
of Y (ω) for ω ∈ Bjk):

Z(ω) = E[X | Ck]

=
∑

j

E[X | Bjk]P (Bjk | Ck)

=
∑

j

Y (Bjk)P (Bjk | Ck)

= E[Y | Ck] .

The linear algebra projection interpretation makes the tower property seem
obvious. Any function measurable with respect to G is also measurable with
respect to F , which means that the subspace SG is contained in SF . If you
project X onto SF then project the projection onto SG , you get the same thing
as projecting X directly onto SG (always orthogonal projections).

2.31. Modern conditional probability: Probabilities can be defined as ex-
pected values of indicator functions (see below). Therefore, the modern defini-
tion of conditional expectation gives a modern definition of conditional prob-
ability. For any event, A, the indicator function, 1A(ω), (also written χA(ω),
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for characteristic function, terminology less used by probabilists because char-
acteristic function means something else to them) is defined by 1A(ω) = 1 if
ω ∈ A, and 1A(ω) = 0 if ω /∈ A. The obvious formula P (A) = E[1A] is the
representation of the probability as an expected value. The modern conditional
probability then is P (A | F) = E[1A | F ]. Unraveling the definitions, this is a
function, YA(ω), that takes the value P (A | Bk) whenever ω ∈ Bk. A related
statement, given for practice with notation, is

P (A | F)(ω) =
∑

Bk∈PF

P (A | Bk)1Bk
(ω) .

2.32. Exercises:

1. See Paragraph 9. Suppose there are an even number of tosses, A ⊂ Ω is
the event that the number of heads is the same as the number of tails,
and B the event that the first toss is a head. Show that A and B are
independent. Hint: If ω ∈ Ω, define ω as the sequence with every toss
reversed, e.g. TTHTHH = HHTHTT . Show that ω ∈ A ↔ ω ∈ A and
use this to show that P (B) = P (B | A), that is, exactly half the elements
in A start with H .

2. Coin tossing space4 This exercise gives another example of continuous
probability. The coin tossing probability space, Ω, is the set of infinite
sequences of T and H symbols. An outcome ω ∈ Ω is an infinite sequence
ω = (ω1, ω2, . . .), where ωk is either T or H . For any such ω and any n > 0,
there is the event An(ω) ⊂ Ω consisting of all sequences that agree with
ω in the first n tosses. That is, ω′ ∈ An(ω) if ω′

k = ωk for k = 1, . . . , n.
If the tosses are “fair” and independent, then P (An(ω)) = 2−n is the
probability of getting any particular sequence in the first n tosses. Show
that P (ω) = 0 for any ω because ω ∈ An(ω), so P (ω) ≤ P (An(ω)) = 2−n

for any n.

3 Markov Chains, I

3.1. Introduction: Discrete time Markov5 chains are a simple abstract class
of discrete random processes. Many practical models are Markov chains. Here
we discuss Markov chains having a finite state space (see below).

Many of the general concepts above come into play here. The probability
space Ω is the space of paths. The natural states of partial information are
described by the algebras Ft, which represent the information obtained by ob-
serving the chain up to time t. The tower property applied to the Ft leads to

4This terminology due to Irving Siegal.
5The Russian mathematician A. A. Markov was active in the last decades of the 19th

century. He is known for his path breaking work on the distribution of prime numbers as well
as on probability.
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backward and forward equations. This section is mostly definitions. The good
stuff is in the next section.

3.2. Time: The time variable, t, will be an integer representing the number
of time units from a starting time. The actual time to go from t to t + 1 could
be a nanosecond (for modeling computer communication networks) or a month
(for modeling bond rating changes), or whatever. To be specific, we usually
start with t = 0 and consider only non negative times.

3.3. State space: At time t the system will be in one of a finite list of states.
This set of states is the state space, S. To be a Markov chain, the state should
be a complete description of the actual state of the system at time t. This
means that it should contain any information about the system at time t that
helps predict the state at future times t + 1, t + 2, ... . This is illustrated with
the hidden Markov model below. The state at time t will be called X(t) or Xt.
Eventually, there may be an ω also, so that the state is a function of t and ω:
X(t, ω) or Xt(ω). The states may be called ξ1, . . ., ξm , or simply 1, 2, . . . , m.
depending on the context.

3.4. Path space: The sequence of states X0, X1, . . ., XT , is a path. The set of
paths is path space. It is possible and often convenient to use the set of paths as
the probability space, Ω. When we do this, the path X = (X0, X1, . . . , XT ) =
(X(0), X(1), . . . , X(T )) plays the role that was played by the outcome ω in the
general theory above. We will soon have a formula for the P (X), probability of
path X , in terms of transition probabilities.

In principle, it should be possible to calculate the probability of any event
(such as {X(2) 6= ξ1}, or {X(t) = ξ1 for some t ≤ T}) by listing all the paths
(outcomes) in that event and summing their probabilities. This is rarely the
easiest way. For one thing, the path space, while finite, tends to be enormous.
For example, if there are m = |S| = 7 states and T = 50 times, then the number
of paths is |Ω| = mT = 750, which is about 1.8 × 1042. This number is beyond
computers.

3.5. Partial path notation: Suppose t1 ≤ t2 are nonnegative integers. We
write X [t1, t2] to denote the path from time t1 to time t2. Precisely, X [t1, t2]
is the sequence of states (X(t1), X(t1 + 1), . . ., Xt2). If t1 = t2, the path is
the single state variable X [t1, t1] = X(t1) (possible abuse of notation). We let
A(x[t1, t2]) be the set of paths X so that X(t) = x(t) for t1 ≤ t ≤ t2. Finally,
P (x[t1, t2]) = P (A(x[t1, t2])).

3.6. Algebras Ft and Gt: The information learned by observing a Markov
chain up to and including time t is Ft. Paths X1 and X2 are equivalent in Ft

if X1(s) = X2(s) for 0 ≤ s ≤ t. Said only slightly differently, the equivalence
class of path X is the set of paths X ′ with X ′(s) = X(s) for 0 ≤ s ≤ t. The Ft

form an increasing family of algebras: Ft ⊆ Ft+1. (Event A is in Ft if we can
tell whether A occurred by knowing X(s) for 0 ≤ s ≤ t. In this case, we also
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can tell whether A occurred by knowing X(s) for 0 ≤ s ≤ t + 1, which is what
it means for A to be in Ft+1.)

The algebra Gt is generated by X(t) only. It encodes the information learned
by observing X at time t only, not at earlier times. Clearly Gt ⊆ Ft, but Gt is
not contained in Gt+1, because X(t + 1) does not determine X(t).

3.7. Nonanticipating (adapted) functions: An outcome in a Markov chain is
X , the path up to time T . This takes the place of what was called ω in abstract
probability. A function of a the outcome, or function of a random variable, will
now be called F (X) instead of X(ω). Over and over in stochastic processes,
we deal with functions that depend on both X and t. Such a function will be
called F (X, t). The simplest such function is F (X, t) = X(t). More complicated
functions are: (i) F (X, t) = 1 if X(s) = 1 for some s ≤ t, F (X, t) = 0 otherwise,
and (ii) F (X, t) = min(s > t) with X(s) = 1 or F (X, t) = T if X(s) 6= 1 for
t < s ≤ T .

A function F (X, t) is nonanticipating (also called adapted, though the notions
are slightly different in more sophisticated situations) if, for each t, the function
of X given by F (X, t) is measurable with respect to Ft. This is the same as
saying that F (X, t) is determined by the values X(s) for s ≤ t. The function
(i) above has this property but (ii) does not.

Nonanticipating functions are important for several reasons. In time, we
will see that the Ito integral makes sense only for nonanticipating functions.
Moreover, nonanticipating are a model of decision making under uncertainty.
That F is nonanticipating means that the decision at time t is made based on
information available at time t and does not depend on future information.

3.8. Markov property: Informally, the Markov property is that X(t) is all the
information about the past that is helpful in predicting the future. In classical
terms, for example,

P (X(t + 1) = k|X(t) = j) = P (X(t + 1) = k|X(t) = j, X(t − 1) = l, etc.) .

In modern notation, this may be stated

P (X(t + 1) = k | Ft) = P (X(t + 1) = k | Gt) . (9)

Recall that both sides are functions of the outcome, X . The function on the
right side, to be measurable with respect to Gt must be a function of X(t) only,
see Paragraph byFunction = 3.8. The left side also is a function, but in general
could depend on all the values X(s) for s ≤ t. The equality (9) states that
this function depends on X(t) only. An even fancier formulation of the Markov
property would be

P (X [t1, t2] | Ft) = P (X [t1, t2] | Gt) . (10)

We will see that this is equivalent to (9).
The Markov property may be interpreted as the absence of hidden variables,

variables that influence the evolution of the Markov chain but are not observable
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or included in the state description. If there were hidden variables, observing
the chain for a long period might help identify them and therefore change our
prediction of the future state. The Markov property (9) states, on the contrary,
that observing X(s) for s < t does not change our predictions.

3.9. Transition probabilities: The conditional probabilities (9) are transition

probabilities:

Pjk = P (X(t + 1) = k | X(t) = j) = P (j → k in one step) .

The Markov chain is stationary if the transition probabilities Pjk are indepen-
dent of t. Each transition probability Pjk is between 0 and 1, with values 0 and
1 allowed, though 0 is more common than 1. Also, for each fixed j

∑

k=1m

Pjk = 1 ,

because k = 1, 2, . . ., m is a complete list of the possible states at time t + 1.

3.10. Path probabilities: The Markov property leads to a formula for the
probabilities of individual path outcomes P (X) as products of transition prob-
abilities. We do this here for a stationary Markov chain to keep the notation
simple. First, suppose that the probabilities of the initial states are known, and
call them

f0(j) = P (X(0) = j) .

The Bayes’ rule (2) implies that

P (X(1) = k and X(0) = j)

= P (X(1) = k | X(0) = j) · P (X(0) = j) = f0(j)Pjk .

Using this argument again, and using (9), we find (changing the order of the
factors on the last line)

P (X(2) = l and X(1) = k and X(0) = j)

= P (X(2) = l | X(1) = k and X(0) = j) · P (X(1) = k and X(0) = j)

= P (X(2) = l | X(1) = k) · P (X(1) = k and X(0) = j)

= f0(j)PjkPkl .

This can be extended to paths of any length. Let x[0, T ] = (x(0), x(1), · · · , x(T ))
be a generic path. We seek P (x[0, T ]) = P (X = x) = P (X(0) = x(0), X(1) =
x(1), · · ·). The argument above shows that this is given by

P (x[0, T ]) = f0(x(0))Px(0),x(1) · · ·Px(T−1),x(T ) = f0(x(0))

T−1
∏

t=0

Px(t),x(t+1) .

(11)
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3.11. Transition matrix: The transition probabilities form an m×m matrix,
P (an unfortunate conflict of notation), called the transition matrix. The (j, k)
entry of P is the transition probability Pjk = P (j → k). The sum of the
entries of the transition matrix P in row j is

∑

k Pjk = 1. A matrix with these
properties: no negative entries, all row sums equal to 1, is a stochastic matrix.
Any stochastic matrix can be the transition matrix for a Markov chain.

Methods from linear algebra often help in the analysis of Markov chains. As
we will see in the next lecture, the time s transition probability

P s
jk = P (Xt+s = k | Xt = j)

is the (j, k) entry of P s, the sth power of the transition matrix (explanation
below). Also, as discussed later, steady state probabilities form an eigenvector
of P corresponding to eigenvalue λ = 1.

3.12. Example, coin flips: The state space has m = 2 states, called U (up)
and D (down). Writing H and T would conflict with T being the length of
the chain. The coin starts in the U position, which means that f0(U) = 1 and
f0(D) = 0. At every time step, the coin turns over with 20% probability, so the
transition probabilities are PUU = .8, PUD = .2, PDU = .2, PDD = .8. The
transition matrix is (taking U for 1 and D for 2):

P =

(

.8 .2

.2 .8

)

For example, we can calculate

P 2 = P · P =

(

.68 .32

.32 .68

)

and P 4 = P 2 · P 2 =

(

.5648 .4352

.4352 .5648

)

.

This implies that P (X(4) = D) = P (X(0) = U → X(4) = D) = P 4
UD = .4352.

The eigenvalues of P are λ1 = 1 and λ2 = .6, the former required by theory.
Numerical experimentation should can convince the reader that

∥

∥

∥

∥

P s −
(

.5 .5

.5 .5

)∥

∥

∥

∥

= const · λs
2 .

Take T = 3 and let A be the event UUzU, where the state X(2) = z is
unknown. There are two outcomes (paths) in A:

A = {UUUU, UUDU} ,

so P (A) = P (UUUU) + P (UUDU). The individual path probabilities are cal-
culated using (11):

U
.8→ U

.8→ U
.8→ U so P (UUUU) = 1 × .8 × .8 × .8 = .512 .

U
.8→ U

.2→ D
.2→ U so P (UUDU) = 1 × .8 × .2 × .2 = .032 .
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Thus, P (A) = .512 + .032 = .544.

3.13. Example, modulated chain: There are two coins, F (fast) and S (slow).
Either coin will be either U or D at any given time. Only one coin is present at
any given time but sometimes the coin is replaced (F for S or vice versa) without
changing its U–D status. The F coin has the same U–D transition probabilities
as Paragraph 12. The S coin has U–D transition probabilities:

(

.9 .1
.05 .95

)

The probability of coin replacement at any given time is 30%. The replacement
(if it happens) is done after the (possible) coin flip without changing the U–D
status of the coin after that flip. The Markov chain has 4 states, which we
arbitrarily number 1: UF, 2: DF, 3: US, 4: DS. States 1 and 3 are U states
while states 1 and 2 are F states, etc. The transition matrix is 4 × 4. We can
calculate, for example, the (non) transition probability for UF → UF. We first
have a U → U (non) transition then an F → (non) transition. The probability
is then P (U → U | F ) · P (F → F ) = .8 · .7 = .56. The other entries can be
found in a similar way. The transitions are:









UF → UF UF → DF UF → US UF → DS
DF → UF DF → DF DF → US DF → DS
US → UF US → DF US → US US → DS
DS → UF DS → DF DS → US DS → DS









.

The resulting transition matrix is

P =









.8 · .7 .2 · .7 .8 · .3 .2 · .3

.2 · .7 .8 · .7 .2 · .3 .8 · .3

.9 · .3 .1 · .3 .9 · .7 .1 · .7
.05 · .3 .95 · .3 .05 · .7 .95 · .7









.

If we start with U but equally likely F or S, and want to know the probability
of being D after 4 time periods, the answer is

.5 ·
(

P 4
12 + P 4

14 + P 4
32 + P 4

34

)

because states 1 = UF and 3 = US are the (equally likely) possible initial U
states, and 2 = DF and 4 = DS are the two D states. We also could calculate
P (UUzU) by adding up the probabilities of the 32 (list them) paths that make
up this event.

3.14. Incomplete state information: In the model of Paragraph 13 we might
be able to observe the U–D status but not the F–S status. Let X(t) be the state
of the Paragraph 13 model above at time t. Suppose Y (t) = U if X(t) = UF
or X(t) = UD, and Y (t) = D if X(t) = DF or X(t) = DD. Then the sequence
Y (t) is a stochastic process but it is not a Markov chain. We can better predict
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U ↔ D transitions if we know whether the coin is F or S, or even if we have a
basis for guessing its F–S status.

For example, suppose that the four states (UF, DF, US, DS) at time t = 0
are equally likely, that we know Y (1) = U and we want to guess whether Y (2)
will again be U. If Y (0) is D then we are more likely to have the F coin so
a Y (1) = U → Y (2) = D transition is more likely. That is, with Y (1) fixed,
Y (0) = D makes it less likely to have Y (2) = U . This is a violation of the
Markov property brought about by incomplete state information. Models of this
kind are called hidden Markov models. Statistical estimation of the unobserved
variable is a topic for another day.

3.15. Exercises:

1. Let ft(ξ) = P (X(t) = ξ). Write a formula in terms of f and the transition
probabilities for P (x[t1, t2]).

Thanks to Laura K and Craig for pointing out mistakes and confusions in
earlier drafts.
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