
Stochastic Calculus Notes, Lecture 2
Last modified January 25, 2007

1 Forward and Backward Equations for Markov

chains

1.1. Introduction: Forward and backward equations are useful ways to
get answers to quantitative questions about Markov chains. The probabilities
u(k, t) = P (X(t) = k) satisfy forward equations. These allow us to compute
all the numbers u(k, t + 1) once the all the numbers u(j, t) are known. The
expected values f(k, t) = E[V (X(T)) | X(t) = k] (for t < T) satisfy a backward
equation that allows us to calculate the numbers f(k, t) once all the f(j, t + 1)
are known. A duality relation allows us to infer the forward equation from
the backward equation, or conversely. The transition matrix is the generator of
both equations, though in different ways. There are many related problems that
have solutions involving forward and backward equations. Two treated here are
hitting probabilities and random compound interest.

1.2. Forward equation, functional version: Let u(k, t) = P (X(t) = k). The
law of total probability gives

u(k, t + 1) = P (X(t + 1) = k)

=
∑

j

P (X(t + 1) = k | X(t) = j) · P (X(t) = j) .

Therefore
u(k, t + 1) =

∑

j

Pjku(j, t) . (1)

This is the forward equation for probabilities. It is also called the Kolmogorov
forward equation or the Chapman Kolmogorov equation. Once u(j, t) is known
for all j ∈ S, (1) gives u(k, t + 1) for any k. Thus, we can go forward in time
from t = 0 to t = 1, etc. and calculate all the numbers u(k, t).

Note that if we just wanted one number, say u(17, 49), still we would have
to calculate many related quantities, all the u(j, t) for t < 49. If the state space
is too large, this direct forward equation approach may be impractical.

1.3. Row and column vectors: If A is an n × m matrix, and B is an
m× p matrix, then AB has dimensions n× p. The matrices are compatible for
multiplication because the number of columns of A is the same as the number
of rows of B. A matrix with just one column is a column vector.1 A matrix
with just one row is a row vector. Matrix-vector multiplication is a special case

1The physicists’ more sophisticated idea that a vector is a physical quantity with certain
transformation properties is “inoperative” here.

1

of matrix-matrix multiplication. We often denote genuine matrices (more than
one row and column) with capital letters and vectors, row or column, with lower
case. In particular, if u is an n component row vector, a 1× n matrix, and A is
an n× n matrix, then uA is another n component row vector. We do not write
Au for this because that would be incompatible. Matrix multiplication is always
associative. For example, if u is a row vector and A and B are square matrices,
then (uA)B = u(AB). We can compute the row vector uA then multiply by B,
or we can compute the n × n matrix AB then multiply by u.

If u is a row vector, we usually denote the k-th entry by uk instead of u1k.
Similarly, the k-th entry of column vector f is fk instead of fk1. If both u and
f have n components, then uf =

∑n
k=1 ukfk is a 1 × 1 matrix, i.e. a number.

Thus, treating row and column vectors as special kinds of matrices makes the
product of a row with a column vector natural. This is not the case for the
product of two row or two column vectors.

1.4. Forward equation, matrix version: The probabilities u(k, t) form the
components of a row vector, u(t), with components uk(t) = u(k, t) (an abuse of
notation). The forward equation (1) may be expressed (check this)

u(t + 1) = u(t)P . (2)

Because matrix multiplication is associative, we have

u(t) = u(t − 1)P =
(
u(t − 2)P

)
P = u(t − 2)P 2 = · · · = u(0)P t . (3)

Tricks of matrix multiplication give information about the evolution of probabil-
ities. For example, we can write a formula for u(t) in terms of the eigenvectors
and eigenvalues of P . Also, we can save effort in computing u(t) for large t by
repeated squaring:

P → P 2 →
(
P 2
)2

= P 4 → · · · → P 2k

using just k matrix multiplications. For example, this computes P 1024 using
just ten matrix multiplies, instead of a thousand.

1.5. Backward equation, functional version: Suppose we run the Markov
chain until time T then get a “reward”, V (X(T)). For t ≤ T , define the condi-
tional expectations

f(k, t) = E [V (X(T)) | X(t) = k] . (4)

This expression is used so often it often is abbreviated

f(k, t) = Ek,t[V (X(T))] .

These numbers f(k, t) satisfy a backward equation that follows from the law of
total probability:

f(k, t) = E [V (X(T)) | X(t) = k]

2

=
∑

j∈S

E [V (X(T)) | X(t) = k and X(t + 1) = j] · P (X(t + 1) = j | X(t) = k)

f(k, t) =
∑

j∈S

f(j, t + 1)Pkj . (5)

The Markov property is used to infer that

E[V (X(T)) | X(t) = k and X(t + 1) = j] = Ej,t+1[V (X(T))] .

The dynamics (5) must be supplemented with the final condition

f(k, T) = V (k) . (6)

Using these, we may compute all the numbers f(k, T − 1), then all the numbers
f(k, T − 2), etc.

1.6. Backward equation using modern conditional expectation: As usual, Ft

denotes the σ−algebra generated by X(0), . . ., X(t). Define F (t) = E[V (X(T)) |
Ft]. The left side is a random variable that is measurable in Ft, which means
that F (t) is a function of (X(0), . . . , X(t)). The Markov property implies that
F (t) actually is measurable with respect to Gt, the σ−algebra generated by X(t)
alone. This means that F (t) is a function of X(t) alone, which is to say that
there is a function f(k, t) so that F (t) = f(X(t), t), and

f(X(t), t) = E[V (X(T)) | Ft] = E[V (X(T)) | Gt] .

Since Gt is generated by the partition {k} = {X(t) = k}, this is the same def-
inition (4). Moreover, because Ft ⊆ Ft+1 and F (t + 1) = E[V (X(T)) | Ft+1],
the tower property gives

E[V (X(T)) | Ft] = E[F (t + 1) | Ft] ,

so that, again using the Markov property,

F (t) = E[F (t + 1) | Gt] . (7)

Note that this is a version of the tower property. On the event {X(t) = k}, the
right side above takes the value

∑

j∈S

f(j, t + 1) · P (x(t + 1) = j | X(t) = k) .

Thus, (7) is the same as the backward equation (5). In the continuous time
versions to come, (7) will be very handy.

1.7. Backward equation, matrix version: For each t, we organize the numbers
f(k, t) into a column vector f(t) = (f(1, t), f(2, t), · · ·)t. It is barely an abuse
to write f(t) both for a function of k and a vector. After all, any computer

3

programmer knows that a vector really is a function of the index. The backward
equation (5) then is equivalent to (check this)

f(t) = Pf(t + 1) . (8)

Again the associativity of matrix multiplication lets us write, for example,

f(t) = PT−tV ,

writing V for the vector of values of V .

1.8. Invariant expectation value: We combine the conditional expectations
(4) with the probabilities u(k, t) and the law of total probability to get, for any
t,

E[V (X(T))] =
∑

k∈S

P (X(t) = k) · E[V (X(T)) | X(t) = k]

=
∑

k∈S

u(k, t)f(k, t)

= u(t)f(t) .

The last line is a natural example of an inner product between a row vector and a
column vector. Note that the product E[V (X(T))] = u(t)f(t) does not depend
on t even though u(t) and f(t) are different for different t. For this invariance
to be possible, the forward evolution equation for u and the backward equation
for f must be related.

1.9. Relationship between the forward and backward equations: It often
is possible to derive the backward equation from the forward equation and
conversely using the invariance of u(t)f(t). For example, suppose we know
that f(t) = Pf(t + 1). Then u(t + 1)f(t + 1) = u(t)f(t) may be rewritten
u(t + 1)f(t + 1) = u(t)Pf(t + 1), which may be rearranged as (using rules of
matrix multiplication)

(u(t + 1) − u(t)P) f(t + 1) = 0 .

If this is true for enough linearly independent vectors f(t + 1), then the vector
w = u(t + 1) − u(t)P must be zero, which is the matrix version of the forward
equation (2). A theoretically minded reader can verify that enough f vectors
are produced if the transition matrix is nonsingular and we choose a linearly
independent family of “reward” vectors, V . In the same way, the backward
evolution of f is a consequence of invariance and the forward evolution of u.

We now have two ways to evaluate E[V (X(T))]: (i) start with given u(0),
compute u(T) = u(0)PT , evaluate u(T)V , or (ii) start with given V = f(T),
compute f(0) = PT V , then evaluate u(0)f(0). The former might be preferable,
for example, if we had a number a number of different reward functions to
evaluate. We could compute u(T) once then evaluate u(T)V for all our V
vectors.

4

1.10. Duality: In it’s simplest form, duality is the relationship between a
matrix and its transpose. The set of column vectors with n components is a
vector space of dimension n. The set of n component row vectors is the dual
space, which has the same dimension but may be considered to be a different
space. We can combine an element of a vector space with an element of its dual
to get a number: row vector u multiplied by column vector f yields the number
uf . Any linear transformation on the vector space of column vectors is repre-
sented by an n× n matrix, A. This matrix also defines a linear transformation,
the dual transformation, on the dual space of row vectors, given by u → uA.
This is the sense in which the forward and backward equations are dual to each
other.

Some people prefer not to use row vectors and instead think of organizing
the probabilities u(k, t) into a column vector that is the transpose of what
we called u(t). For them, the forward equation would be written u(t + 1) =
P tu(t) (note the notational problem: the t in P t means “transpose” while the
t in u(t) and f(t) refers to time.). The invariance relation for them would be
ut(t + 1)f(t + 1) = ut(t)f(t). The transpose of a matrix is often called its dual.

1.11. Comparison principles for the backward equation: There are some
some helpful theoretical properties of solutions of backward and forward equa-
tions. Suppose V1(k) and V2(k) are two payout functions, and fj(k, t) =
Ek,t [Vj(X(T))] (for j = 1 and j = 2). If V1(k) ≤ V2(k) for all k ∈ S,
then clearly f1(k, t) ≤ f2(k, t) for all k ∈ S and all t ≤ T . Similarly, if
t2 > t then fj(k, t) = Ek,t [f(X(t2), t2)] (by the tower property). Therefore
we have the comparison principle: if f1(k, t2) ≤ f2(k, t2) for all k ∈ S, then also
f1(k, t) ≤ f2(k, t) for all k ∈ S. A related simple fact is the maximum principle:
if t2 ≥ t then

f(k, t) ≤ max
j∈S

f(j, t2) ,

as you move backward in time, the maximum of f cannot increase.

1.12. L1 contraction for the forward equation: The forward equation does
not have a maximum principle, but there is something that cannot increase in
time, the L1 norm of the solution. If w is an n component row vector, the L1

norm is
‖w‖L1 =

∑

j∈S

|wj | .

If the numbers u(j, t) satisfy the forward equation (1), then (proof just below)

‖u(t + 1)‖L1 ≤ ‖u(t)‖L1 , (9)

which can be put more explicitly as

∑

j∈S

|u(j, t + 1)| ≤
∑

j∈S

|u(j, t)| .

5

Of course, if u(j, t) = P (X(t) = j, then u(j, t) ≥ 0 for all j and

‖u(t)‖ =
∑

j∈S

u(j, t) = 1 .

This makes (9) true in the trivial sense that both sides are equal to one.
However, there are solutions to the forward equation (1) that are not proba-

bilities, and the L1 contraction inequality (9) holds also for them. For example,
suppose u1(j, t) and u2(j, t) are two probability distributions that satisfy (1),
then the difference u(j, t) = u2(j, t) − u1(j, t) also satisfies (1) (the forward
equation is linear). The L1 contraction principle implies that

‖u2(t + 1) − u1(t + 1)‖L1 ≤ ‖u2(t) − u1(t)(t)‖ .

The L1 distance between two solutions decreases (contracts) at each time step.
We will see in a future lecture that in nondegenerate cases, ‖u2(t) − u1(t)(t)‖ →
0 as t → ∞. Note that this u not only has

∑
j u(j, t) 6= 1, but probably

u(j, t) < 0 for some j.
To prove (9), start with (1) and sum over k. Note that Pjk ≥ 0 for all j and

k, and that
∑

k∈S Pjk = 1 (see previous lecture). We use the triangle inequality
(|a + b + c + · · ·| ≤ |a| + |b| + |c| + · · ·):

‖u(t + 1)‖L1 =
∑

k∈S

|u(k, t + 1)|

=
∑

k∈S

∣∣∣∣∣∣

∑

j∈S

u(j, t)Pjk

∣∣∣∣∣∣

≤
∑

k∈S

∑

j∈S

|u(j, t)|Pjk

=
∑

j∈S

|u(j, t)|

(
∑

k∈S

Pjk

)

=
∑

j∈S

|u(j, t)| .

This is the proof of (9). There is a similar proof of the comparison and maximum
principles for the backward equation. Solutions of backward equations generally
do not satisfy the L1 contraction principle.

1.13. Hitting probabilities, backwards: The hitting probability for state j
up to time T is

P (X(t) = j for some t ∈ [0, T]) . (10)

Here and below we write [a, b] for all the integers between a and b, including
a and/or b if they are integers. Hitting probabilities can be computed using
forward or backward equations, often by modifying P and adding boundary

6

conditions. One backward equation approach using a backward equation starts
by defining

f(k, t) = P (X(t′) = j for some t′ ∈ [t, T] | X(t) = k) . (11)

Clearly,
f(j, t) = 1 for all t, (12)

and
f(k, T) = 0 for k 6= j. (13)

Moreover, if k 6= j, the law of total probabilities yields a backward relation

f(k, t) =
∑

l∈S

Pklf(l, t + 1) . (14)

The difference between this and the plain backward equation (5) is that the
relations (14) hold only for interior states k 6= j, while the boundary condition
(12) supplies the values of f(j, t). The sum on the right of (14) includes the
term corresponding to state l = j.

1.14. Matrix formulation: The difference between the two backward equa-
tions (one for expected final payout, one for hitting probability) becomes clearer

if we express them in matrix terms. Let f̃(t) be the column vector with n − 1
components consisting of the numbers f(k, t) for interior states k 6= j. Let g be
the n−1 component column vector whose entries are gk = Pkj , for k 6= j. Since
f(j, t) = 1, we may rewrite (14) as

f(k, t) =
∑

l 6=k

Pklf(l, t + 1) + gk .

If we define the (n − 1) × (n − 1) matrix P̃ to be P with row j and column j
removed, this becomes

f̃(t) = P̃ f̃(t + 1) + g . (15)

The final conditions for (15) are f̃(T) = 0, because the components of f̃(T) are

the hitting probabilities for states k 6= j. This means f̃(T − 1) = g,

f̃(T − 2) = P̃ f̃(T − 1) + g = P̃ 2g + P̃ g + g .

Clearly, the general formula contains a geometric series of matrices. We can
compute the sum using the matrix version of the trick for ordinary geometric
series, which is the calculation, for any square matrix A,

(I − A)
(
Ak + Ak−1 + · · · + A + I

)
= I − Ak+1 .

In our case, if I − P̃ is invertable, we have

f̃(0) =
(
I − P̃

)−1
(
I − P̃T

)
g . (16)

7

The n × n matrix P has different properties from the (n − 1) × (n − 1) matrix

P̃ . At least one of the eigenvalues of P is equal to one (see below), so (I −P)−1

never exists. By contrast, it is the normal case2 that all the eigenvalues of P̃ are
inside the unit circle, so (16) makes sense and P̃T → 0 exponentially as T → ∞.

1.15. Hitting probabilities, forward: We also can compute the hitting proba-
bilities (10) using a forward equation approach. Define the survival probabilities

u(k, t) = P (X(t) = k and X(t′) 6= j for t′ ∈ [0, t]) . (17)

These satisfy the obvious boundary condition

u(j, t) = 0 , (18)

and initial condition
u(k, 0) = 1 for k 6= j. (19)

The forward equation is (as the reader should check), that for k 6= j,

u(k, t + 1) =
∑

l∈S

u(l, t)Plk . (20)

We may include or exclude the term with l = j on the right because u(j, t) = 0.
Of course, (20) applies only at interior states k 6= 1. The overall probability
of survival up to time T is

∑
k∈S u(k, T) and the hitting probability is the

complementary 1 −
∑

k∈S u(k, T).
The matrix vector formulation of this involves the n − 1 component row

vector, ũ(t), whose components are the numbers u(k, t) for k 6= j. Using the

same P̃ the forward equation (20) and boundary condition (18) are equivalent
to the matrix equation

ũ(t + 1) = ũ(t)P̃ .

If the spectral gap,
ρ = 1 − |λmax| (P̃) ,

is positive (the usual case), the survival probabilities converge exponentially to
zero at a rate (1 − ρ)t.

1.16. Absorbing boundaries: Absorbing boundaries are another way to think
about hitting and survival probabilities. It is clear that we could treat the
problem of hitting a set of states B ⊂ S rather than a single state, j. We call
the states j ∈ B boundary states. The vectors f̃ , ũ, and the matrix P̃ leave
out components relating to boundary states. The absorbing boundary Markov
chain is the same as the original chain (same transition probabilities) as long as
the state is not one of the boundary states. In the absorbing chain, the state
never again changes after it visits an absorbing boundary point. If P is the

2See the discussion of positive recurrent, null recurrent, and transient Markov chains in a
future lecture.

8

transition matrix of the absorbing chain and P is the original transition matrix,
this means that P jk = Plk if l is not a boundary state, while P jk = 0 if j is
a boundary state and k 6= j, and P jk = 1. This means that the chain stops
changing (is absorbed) the first time it visits a boundary state. The probabilities
u(k, t) for the absorbing chain are the same as the survival probabilities (17) for
the original chain, if k /∈ B.

1.17. Running cost: Suppose we have a running cost function, W (x), and
we want to calculate

f = E

[
T∑

t=0

W (X(t))

]
. (21)

Sums like this are called path dependent because their value depends on the
whole path, not just the final state X(T). We can calculate (21) with the
forward equation using

f =
T∑

t=0

E [W (X(t))]

=

T∑

t=0

u(t)W . (22)

Here W is the column vector with components Wk = W (k). We compute the
probabilities that are the components of the u(t) using the standard forward
equation (2) and sum the products (22).

One backward equation approach uses the quantities

f(k, t) = Ek,t

[
T∑

t′=t

W (X(t′))

]
. (23)

These satisfy (check this):

f(t) = Pf(t + 1) + W . (24)

Starting with f(T) = W , we work backwards with (24) until we reach the
desired f(0).

1.18. Multiplicitive functionals: For some reason, a function of a function is
often called a functional. The path, X(t), is a function of t, so a function, F (X),
that depends on the whole path is often called a functional. Some applications
call for finding the expected value of a multiplicative functional:

f = E

[
T∏

t=0

V (X(t))

]
. (25)

For example, X(t) could represent the state of a financial market and V (k) =
1 + r(k) the interest rate for state k. Then (25) would be the expected total

9

interest. We also can write V (k) = eW (k), so that

∏
V (X(t)) = exp

[∑
W (X(t))

]
= eZ ,

with

Z(x) =

T∑

t=0

W (x(t)) .

This dos not solve the problem of evaluating (25) because E
[
eZ
]
6= eE(Z).

The backward equation approach uses the intermediate quantities

f(k, t) = Ek,t

[
T∏

t′=t

V (X(t′))

]
.

The t′ = t term in the product has V (X(t)) = V (k). The final condition is
f(k, T) = V (k). The backward evolution equation is derived more or less as
before:

f(k, t) = Ek,t

[
V (k)

∏

t′>t

V (X(t′))

]

= V (k)Ek,t

[
T∏

t′=t+1

V (X(t′))

]

= V (k)Ek,t [f(X(t + 1), t + 1)] (the tower property)

f(k, t) = V (k)
(
Pf(t + 1)

)
(k) . (26)

In the last line on the right, f(t + 1) is the column vector with components
f(k, t + 1) and Pf(t + 1) is the matrix vector product. We write

(
Pf(t + 1)

)
(k)

for the kth component of the column vector Pf(t + 1). We could express the
whole thing in matrix terms using diag(V), the diagonal matrix with V (k) in
the (k, k) position:

f(t) = diag(V)Pf(t + 1) .

A version of (26) for Brownian motion is called the Feynman-Kac formula.

1.19. Branching processes: One forward equation approach to (25) leads to
a different interpretation of the answer. Let B(k, t) be the event {X(t) = k}
and I(k, t, X) the indicator function of B(k, t). That is I(k, t, X) = 1 if X ∈
B(k, t) (i.e. X(t) = k), and I(k, t, X) = 0 otherwise. It is in keeping with the
probabilists’ habit of leaving out the arguments of functions when the argument
is the underlying random outcome that we write I(k, t) in place of I(k, t, X).
The probabilities u(k, t) = P (X(t) = k) satisfy u(k, t) = E[I(k, t)]. The forward
equation for the quantities

g(k, t) = E

[
I(k, t)

t∏

t′=0

V (X(t′))

]
(27)

10

is (see homework):
g(k, t) =

(
g(t − 1)P

)
(k)V (k) . (28)

In matrix terms, it would be g(t) = g(t − 1)Pdiag(V).
This is also the forward equation for a branching process with branching

factors V (k). At time t, the branching process has N(k, t) particles, or walkers,
at state k. The numbers N(k, t) are random. A time step of the branching
process has two parts. First, each particle takes one step of the Markov chain.
A particle at state j goes to state k with probability Pjk. All steps for all
particles are independent. Then, each particle at state k does a branching or
birth/death step in which the particle is replaced by a random number of particles
with expected number V (k). For example, if V (k) = 1/2, we could delete the
particle (death) with probability half. If V (k) = 2.8, we could keep the existing
particle, one new one, then add a third with probability .8. All particles are
treated independently. If there are m particles in state k before the birth/death
step, the expected number after the birth/death step is V (k)m. The expected
number of particles, g(k, t) = E[N(k, t)], satisfies (28).

When V (k) = 1 for all k there need be no birth or death. There will be
just one particle, the path X(t). The number of particles at state k at time t,
N(k, t), will be zero if X(t) 6= k or one if X(t) = k. In fact, N(k, t) = I(k, t)(X).
The expected values will be g(k, t) = E[N(k, t)] = E[I(k, t)] = u(k, t).

The branching process representation of (25) is possible when V (k) ≥ 0 for
all k. Monte Carlo methods based on branching processes are more accurate
than direct Monte Carlo in many cases.

2 Lattices, trees, and random walk

2.1. Introduction: Random walk on a lattice is an important example where
the abstract theory of Markov chains is used. It is the simplest model of some-
thing randomly moving through space with none of the subtlety of Brownian
motion, though random walk on a lattice is a useful approximation to Brownian
motion, and vice versa. The forward and backward equations take a specific
simple form for lattice random walk and it is often possible to calculate or ap-
proximate the solutions by hand. Boundary conditions will be applied at the
boundaries of lattices, hence the name.

We pursue forward and backward equations for several reasons. First, they
often are the best way to calculate expectations and hitting probabilities. Sec-
ond, many theoretical qualitative properties of specific Markov chains are un-
derstood using backward or forward equations. Third, they help explain and
motivate the partial differential equations that arise as backward and forward
equations for diffusion processes.

2.2. Simple random walk: The state space for simple random walk is the
integers, positive and negative. At each time, the walker has three choices: (A)
move one unit to the right, (B) do not move, (C) move one unit to the left. The

11

probabilities are P (A) = P (k → k + 1) = a, P (B) = P (X(t + 1) = X(t)) = b,
and P (X(t + 1) = X(t) − 1) = c. Naturally, we need a, b, and c to be non-
negative and a + b + c = 1. The transition matrix3 has b on the diagonal
(Pkk = b for all k), a on the super-diagonal (Pk,k+1 = a for all k), and c on the
sub diagonal. All other matrix elements Pjk are zero.

This Markov chain is homogeneous or translation invariant: The probabili-
ties of moving up or down are independent of X(t). A translation by k is a shift
of everything by k (I do not know why this is called “translation”). Translation
invariance implies, among other things, that the probability of going from m
to l in s steps is the same as the probability of going from m + k to l + k in
s steps: P (X(t + s) = l | X(t) = m) = P (X(t + s) = l + k | X(t) = m + k).
It is common to simplify general discussions by choosing k so that X(0) = 0.
Mathematicians often say “without loss of generality” or “w.l.o.g.” when doing
so.

Often, particularly when discussing multidimensional random walk, we use
x, y, etc. instead of j, k, etc. to denote lattice points (states of the Markov
chain). Thus, we might write Pxy = P (X(t+1) = x | X(t) = y). As an exercise
in definition unwrapping, review Lecture 1 and check that this is the same as
PX(t),x = P (X(t + 1) = x | Ft).

2.3. Gaussian approximation, drift, and volatility: We can write X(t + 1) =
X(t) + Y (t), where P (Y (t) = 1) = a, P (Y (t) = 0) = b, and P (Y (t) = −1) = c.
The random variables Y (t) are independent of each other because of the Markov
property and homogeneity. Assuming (without loss of generality) that X(0) = 0,
we have

X(t) =

t−1∑

s=0

Y (s) , (29)

which expresses X(t) as a sum of iid (independent and identically distributed)
random variables. The central limit theorem then tells us that for large t, X(t)
is approximately Gaussian with mean µt and variance σ2t, where µ = E[Y (t)] =
a− c and σ2 = var[Y (t)] = a+ c− (a− c)2. These are called drift and volatility4

respectively. The mean and variance of X(t) grow linearly in time with rate µ
and σ2 respectively. Figure 1 shows some probability distributions for simple
random walk. The central limit theorem Gaussian approximation is somewhat
accurate after 8 steps and rather more accurate after 60 steps. The effect of
skewness is clearly visible in the top plot. Values just to the left of the mean are
more likely than the central limit theorem approximation predicts and values
just to the right are less likely.

2.4. Forward and backward equations: The probabilities u(x, t) = P (X(t) =

3This “matrix” is infinite when the state space is infinite. Matrix multiplication is still
defined. For example, the k component of uP is given by (uP)k =

∑
j
ujPjk. This possibly

infinite sum has only three nonzero terms when P is tridiagonal.
4People use the term volatility in two distinct ways. In the Black Scholes theory, volatility

means something else.

12

−45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

0.02

0.04

0.06

0.08
a = 0.20, b= 0.20, c= 0.60, T = 60

k

pr
ob

ab
ili

ty

−8 −6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2
a = 0.20, b= 0.20, c= 0.60, T = 8

k

pr
ob

ab
ili

ty

Figure 1: The probability distributions after T = 8 (top) and T = 60 (bottom)
steps for simple random walk. The smooth curve and circles represent the cen-
tral limit theorem Gaussian approximation. The plots have different probability
and k scales. Values not shown have very small probability.

13

x) satisfy the forward equation (Check that these agree with the general theory
of Lecture 1):

u(x, t + 1) = au(x − 1, t) + bu(x, t) + cu(x + 1, t) . (30)

The expected values f(x, t) = Ex,t [V (X(T))] satisfy the backward equation

f(x, t) = cf(x − 1, t + 1) + b(f(x, t + 1) + af(x + 1, t + 1) . (31)

These equations have several differences. Note that a multiplies the value from
the left in (30) and the value from the right in (31). Of course, (30) moves
forward in time, computing the probabilities u at time t+1 from the probabilities
at time t. The backward equation (31) computes expected values at time t from
those at time t + 1.

The backward equation has a variety of explicit solutions. Polynomial solu-
tions such as, f(x, t) = p2(t)x2 + p1(t)x + p0(t) can by found by plugging into
(31) and calculating formulas for p2(t), p1(t), and p0(t) in terms of the same
coefficients at time t + 1. There also are exponential solutions f(x, t) = m(t)zx,
where m(t) =

(
cz−1 + b + az

)
m(t + 1).

2.5. Qualitative properties: Solutions of the forward and backward equations
(30) and (31) have special qualitative properties not shared by forward and
backward equation solutions for general Markov chains. For random walk, both
the forward and backward equation solutions have maximum and comparison
principles and the L1 contraction property. For example,

max
x

u(x, t + 1) ≤ max
x

u(x, t) .

The proof is a simple application of the facts that a + b + c = 1 and a ≥ 0,
b ≥ 0, and c ≥ 0. Similarly

∑

x

|f(x, t)| ≤
∑

x

|f(x, t + 1)| .

We will see that in the urn model, neither of these extra inequalities is satisfied.
Another qualitative property is the smoothing property. If the random walk

is nondegenerate (a > 0, b > 0, c > 0), then solutions to forward or backward
equations become smoother over time. The reader can check that

∑

x

u(x, t + 1)2 =
∑

x

u(x, t)2

− (ab + bc)

(
∑

x

(
u(x + 1, t) − u(x, t)

)2
)

− ac

(
∑

x

(
u(x + 1, t) − u(x − 1, t)

)2
)

.

14

2.6. Trees: Simple random walk can be thought of as a sequence of decisions.
At each time you decide: right (A), stay (B), or left (C). A more general
sequence of decisions is a decision tree. In a general decision tree, making choice
A at time 0 then B at time one would have a different result than choosing first
B then A. After t decisions, there could be 3t different decision paths and
results.

The simple random walk decision tree is recombining, which means that
many different decision paths lead to the same X(t). For example, if we start
with X(0) = 0, the paths ABB, CAA, BBA, etc. all lead to X(3) = 1. A
recombining tree is much smaller than a general decision tree. For simple ran-
dom walk, after t steps there are 2t + 1 possible states, instead of up to 3t. For
t = 10, this is 21 instead of about 60 thousand.

2.7. Urn models: Urn models illustrate several features of more general
random walks. Unlike simple random walk, urn models are mean reverting and
have steady state probabilities that determine their large time behavior. We will
come back to them when we discuss scaling in future lectures.

The simple urn contains n balls that are identical except for their color.
There are k red balls and n − k green ones. At each state, someone chooses
one of the balls at random with each ball equally likely to be chosen. He or she
replaces the chosen ball with a fresh ball that is red with probability p and green
with probability 1 − p. All choices are independent. The number of red balls
decreases by one if he or she removes a red ball and returns a green one. This
happens with probability (k/n) · (1 − p). Similarly, the k → k + 1 probability
is ((n − k)/n) · p. There are two ways to get a k → k transition, pick red and
replace with red (prob = (k/n) · p) or pick green and replace with green (prob
= ((n − k)/n) · (1 − p)). In formal terms, the state space is the integers from 0
to n and the transition probabilities are

Pk,k−1 =
k(1 − p)

n
, Pkk =

(2p − 1)k + (1 − p)n

n
, Pk,k+1 =

(n − k)p

n
,

Pjk = 0 otherwise.

If these formulas are right, then Pk,k−1 + Pkk + Pk,k+1 = 1. (check this)

2.8. Urn model steady state: For the simple urn model, the probabilities
u(k, t) = P (X(t) = k) converge to steady state probabilities, v(k), as t → ∞.
This is illustrated in Figure (2). The steady state probabilities are

v(k) =

(
n

k

)
pk(1 − p)n−k .

The steady state probabilities have the property that if u(k, t) = v(k) for all
k, then u(k, t + 1) = v(k) also for all k. This is statistical steady state because
the probabilities have reached steady state values though the states themselves
keep changing, as in Figure (3). In matrix vector notation, we can form the row
vector, v, with entries v(k). Then v is a statistical steady state if vP = v. It is

15

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
n = 30, T = 6

k

pr
ob

ab
ili

ty

Figure 2: The probability distributions for the simple urn model plotted every
T time steps. The first curve is blue, low, and flat. The last one is red and most
peaked in the center. The computation starts with each state being equally
likely. Over time, states near the edges become less likely.

16

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100
p = 0.5, n = 100

t

X

Figure 3: A Monte-Carlo sampling of 11 paths from the simple urn model. At
time t = 0 (the left edge), the paths are evenly spaced within the state space.

17

no coincidence that v(k) is the probability of getting k red balls in n independent
trials with probability p for each trial. The steady state expected number of red
balls is

Ev[X] = np ,

where the notation Ev[·] refers to expectation in probability distribution v.

2.9. Urn model mean reversion: If we let m(t) be the expected value if X(t),
then a calculation using the transition probabilities gives the relation

m(t + 1) = m(t) +
1

n
(np − m(t)) . (32)

This relation shows not only that m(t) = np is a steady state value (m(t) = np
implies m(t + 1) = np), but also that m(t) → np as t → ∞ (if r(t) = m(t)−np,
then r(t + 1) = αr(t) with |α| =

∣∣1 − 1
n

∣∣ < 1).
Another way of expressing mean reversion will be useful in discussing stochas-

tic differential equations later. Because the urn Model is a Markov chain,

E [X(t + 1) | Ft] = E [X(t + 1) | X(t)]

Again using the transition probabilities, we get

E [X(t + 1) | Ft] = X(t) +
1

n
(np − X(t)) . (33)

If X(t) > np, we have

E[∆X(t)] = E[X(t + 1) − X(t)] −
1

n
(np − X(t)) ,

is negative. If X(t) < np, it is positive.

2.10. Boundaries: The terms boundary, interior, region, etc. as used in the
general discussion of Markov chain hitting probabilities come from applications
in lattice Markov chains such as simple random walk. For example, the region
x > β has boundary x = β. The quantities

u(x, t) = P (X(t) = x and X(s) > β for 0 ≤ s ≤ t)

satisfy the forward equation (just (1) in this special case)

u(x, t + 1) = au(x − 1, t) + bu(x, t) + cu(x + 1, t)

for x > β together with the absorbing boundary condition u(β, t) = 0. We could
create a finite state space Markov chain by considering a region β < x < γ with
simple random walk in the interior together with absorbing boundaries at x = β
and x = γ. Absorbing boundary conditions are also called Dirichlet boundary
conditions.

18

Another way to create a finite state space Markov chain is to put reflecting
boundaries at x = β and x = γ. This chain has the same transition probabilities
as ordinary random walk in the interior (β < x < γ). However, transitions from
β to β − 1 are disallowed and replaced by transitions from β to β + 1. This
means changing the transition probabilities starting from x = β to

P (β → β−1) = Pβ,β−1 = 0 , P (β → β) = Pββ = b , P (β → β+1) = Pβ,β+1 = a+c .

The transition rules at x = γ are similarly changed to block γ → γ + 1 transi-
tions. There is some freedom in defining the reflection rules at the boundaries.
We could, for example, make P (β → β) = b + c and P (β → β + 1) = a, which
changes the blocked transition to standing still rather than moving right. We
return to this point in discussing oblique reflection in multidimensional random
walks and diffusions.

2.11. Some boundary value problems: To be concrete, let us put absorbing
boundaries at β = 0 and γ = L. We assume the random walk starts at a state
X(0) = x ∈ [0, L] and ask which of the boundary points is hit first. We seek to
calculate

w(x) = P (X(t) = 0 before X(t) = L | X(0) = x) . (34)

(We make the technical assumption that a 6= 0 and c 6= 0, so that hitting 0 first
and hitting L first both are possible.) Clearly, this satisfies boundary conditions
w(0) = 1 and w(L) = 0. For x ∈ [1, L−1], we can use the law of total probability
to find equations satisfied by w. Let A be the event {X(t) = 0 before X(t) = L}.
Then, reasoning as before (e.g. P (A | X(0) = x and X(1) = x− 1) = w(x − 1),
by the Markov property),

w(x) = P (A | X(0) = x)

= P (A | X(0) = x and X(1) = x − 1) · P (x → x − 1)

+ P (A | X(0) = x and X(1) = x) · P (x → x)

+ P (A | X(0) = x and X(1) = x + 1) · P (x → x + 1)

= cw(x − 1) + bw(x) + aw(x + 1) .

To summarize, we can calculate the probabilities (34) by solving the boundary
value problem, which consists of an equation satisfied in the interior:

cw(x − 1) + (b − 1)w(x) + aw(x + 1) = 0 , (35)

together with the boundary conditions given above.
The solution to the boundary value problem takes different forms depending

on whether a = c (no drift), or a 6= c (drift). In the case of no drift, it
is easy to check5 that any solution of the recurrence relation (35) takes the
form w(x) = α + βx. The boundary conditions determine α and β. First,

5Choose α and β so that w(x) = α+βx for x = 1 and x = 2. Since c 6= 0, w(3) is determined
by w(1) and w(2). The value w(3) = alpha + 3β satisfies w(3) = −1

a
(cw(1) + (b − 1)w(2).

19

w(0) = 1 = α + β · 0 gives α = 1. Then, w(L) = 0 = α + βL gives β = 1/L.
Altogether, we have

P (X(t) = 0 before X(t) = L | X(0) = x) = 1 −
x

L
. (36)

The reader should make a final check that this satisfies the equation (35) and
boundary conditions. Other checks are that starting close to 0 makes is more
likely to hit 0 than to hit L first, and that if L is even then w(L/2) = 1/2, so it
is equally likely to hit either boundary point.

In the case of drift, the solution of the recurrence relation is w(x) = α +
β
(

c
a

)x
. For definiteness, we assume that the drift is to the left, c > a. The

boundary conditions w(0) = 1 and w(L) = 0 give a system of two linear equa-
tions that determine α and β:

α + β = 1

α + β
(c

a

)L

= 0 .

If L is large, then (c/a)L is exponentially large, and we have

β =
1

1 +
(

c
L

)L ≈
(a

c

)L

.

and α ≈ 1. For x not too large, this implies that

w(x) ≈ 1 −
(a

c

)L−x

.

This implies that if the drift is to the left and you start anywhere near the left
boundary, then it is exponentially unlikely to hit the right boundary before the
left one.

2.12. Hitting times: The hitting time will be

τ = min {t with X(0) = 0 or X(t) = L} .

The function f(x) = E [τ | X(0) = x] may be found by solving another bound-
ary value problem. The boundary conditions are f(0) = f(L) = 0. The equation
to be satisfied for x ∈ [1, L− 1] comes from the law of total probability much as
before, except that f(x) = E [τ | X(1) = x] + 1:

f(x) = E [τ | X(0) = x]

= E [τ | X(0) = x and X(1) = x − 1] · P (x → x − 1)

+ E [τ | X(0) = x and X(1) = x] · P (x → x)

+ E [τ | X(0) = x and X(1) = x + 1] · P (x → x + 1)

= cf(x − 1) + bf(x) + af(x + 1) + 1 .

20

The equation satisfied in the interior is

cf(x − 1) + (b − 1)f(x) + af(x + 1) = −1 . (37)

We discuss the solution only in the zero drift case a = c 6= 0. In differential
equations, you learn that the general solution to an inhomogeneous equation is
the sum of the general solution to the homogeneous equation plus any particular
solution to the inhomogeneous equation. In this case, the general solution to
the homogeneous equation is α + βx, as above. We guess that there is an
inhomogenous solution of the form f(x) = γx2 and verify by substitution into
(37)

γ
(
a(x − 1)2 + (b − 1)x2 + a(x + 1)2

)
= −1 ,

which gives γ = −1/2a. We now determine which of the general solutions to the
inhomogeneous problem satisfies the boundary conditions: α + βx − 1

2ax2 = 0
when x = 0 and x = L. The x = 0 condition gives α 0. The x L condition then
gives

βL −
1

2a
L2 = 0 ,

which gives β = L/(2a). A little calculation involving completing the square
puts the resulting solution in a helpful form:

f(x) =
L

2a
x −

1

2a
x2

=
1

2a

{
−x2 + Lx −

1

4
L2 +

1

4
L2

}

f(x) =
1

2a

{
1

4
L2 −

(
x −

L

2

)2
}

. (38)

This form of the answer makes it clear that the expected hitting time is sym-
metric about the center of the interval [0, L] and that the largest hitting times
come from the center of the interval.

In particular, f(1
2L) = 1

4L2. This says that it takes on the order of L2 steps
for a symmetric random walk to go a distance L from the center to the boundary.
We will understand this result better when we discuss the approximation of
random walk by Brownian motion in future lectures.

Perhaps more surprising is the result f(1) = 1
2a (L − 1). You start with

X(0) = 1, perform a symmetric random walk, and ask: What is the expected
time until X(t) = 0 or X(t) = L? You might expect that the expected time
might not be very large since you are starting next to a boundary point. The
calculation shows this is wrong. The hitting time, even starting from x = 1
grows linearly with L. Now suppose we set the right endpoint at infinity and
calculate

f = E [min {t with X(t) = 0} | X(0) = 1] .

The answer is f = ∞ (proof: f ≥ 1
2a (L − 1) for any L). Although a symmetric

random walk will eventually come to zero, the expected time to do so is infinite.

21

A more detailed calculation would show that for large t, g(t) = P (τ = t) ≈
Const · t−3/2, so that E[τ] =

∑
t>0 tg(t) has a tail (the terms with large t) that

is approximately Const · t−1/2, so the sum is infinite.

2.13. Multidimensional lattice: The unit square lattice in d dimensions is
the set of d−tuples of integers (the set of integers is called Z):

x = (x1, . . . , xd) with xj ∈ Z for 1 ≤ j ≤ d .

The scaled square lattice, with lattice spacing h > 0, is the set of points hx =
(hx1, . . . , hxd), where x are integer lattice points. In the present discussion, the
scaling is irrelevant, so we use the unit lattice. We say that lattice points x and
y are neighbors if

|xj − yj| ≤ 1 for all coordinates j = 1, . . . , d .

22

