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1 Martingales and stopping times

1.1. Introduction: Martingales and stopping times are inportant technical
tools used in the study of stochastic processes such as Markov chains and diffu-
sions. A martingale is a stochastic process that is always unpredictable in the
sense that E[Ft+t′ | Ft] = Ft (see below) if t′ > 0. A stopping time is a random
“time”, τ(ω), so that we know at time t whether to stop, i.e. the event {τ ≤ t} is
measurable in Ft. These tools work well together because stopping a martingale
at a stopping also has mean zero: if t ≤ τ ≤ t′, then E [Fτ | Ft] = Ft. A central
fact about the Ito calculus is that Ito integrals with respect to Brownian motion
are martingales. Time will be discrete throughout this lecture. The variable t

will take values t = 0, 1, 2, . . ..

1.2. Stochstic process: We have a probability space, Ω. The information
available at time t is represented by the algebra of events Ft. We assume that
for each t, Ft ⊂ Ft+1; since we are supposed to gain information going from t to
t + 1, every known event in Ft is also known at time t + 1. Such an expanding
family of σ−algebras is a filtration. A stochastic process is simply a family of
random variables, Xt(ω). The process is adapted to the filtration Ft if with
Xt ∈ Ft (Xt measureable with respect to Ft). Sometimes it happens that the
random variables Xt contain all the information in the Ft in the sense that Ft

is generated by X0, . . ., Xt. This the minimal algebra in which the Xt form
an adapted stochastic process. In other cases Ft contains more information.
Economists use these possibilities when they distinguish between the “weak
efficient market hypothesis” (the Ft are minimal), and the “strong hypothesis”
(Ft contains all the public information in the world, literally). In the case
of minimal Ft, it may be possible to identify the outcome, ω, with the path
X = X0, . . . , XT . The probabilities P (ω) are not important in these definitions,
only the algebras of sets and random variables Xt.

1.3. Notation: The value of a stochastic process at time t may be written
Xt or X(t). The subscript notation reminds us that the Xt are a family of
functions of the random outcome (random variable) ω. In practical contexts,
particularly in discussing multidimensional processes (X(t) ∈ Rn), we prefer
X(t) so that Xk(t) can represent the kth component of X(t). When the process
is a martingale, we often call it Ft. This will allow us to let X(t) be a Markov
chain and Ft(X) a martingale function of X .

1.4. Example 1, Markov chains: In this example, the Ft are minimal and
Ω is the path space of sequences of length T + 1 from the state space, S. The
new information revealed at time t is the state of the chain at time t. The
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variables Xt are may be called “coordinate functions” because Xt is coordinate
t (or entry t) in the sequence X . In principle, we could express this with the
notation Xt(X), but that would drive people crazy. Although we distinguish
between Markov chains (discrete time) and Markov processes (continuous time),
the term “stochastic process” can refer to either continuous or discrete time.

1.5. Example 2, diadic sets: This is a set of definitions for discussing averages
over a range of length scales. The “time” variable, t, represents the amount of
averaging that has been done. The new information revealed at time t is finer
scale information about a function. The probability space is the positive integers
from 1 to 2T . A diadic block at level t is a sequence of integers of the form

Bt,k =
{
1 + (k − 1)2T−t, 2 + (k − 1)2T−t, . . . , k2T−t

}
. (1)

Here k ranges from 1 to 2t−1, so that there is one level one block, two level two
blocks, four level 3 blocks, and so on. The blocks at level t form a partition of
Ω,

Pt =
{
Bt,k with k = 1, . . . , 2T−t

}
.

which generates the algebra Ft. Moving from level t to level t + 1 splits each
block into right and left halves:

Bt,k = Bt+1,2k−1 ∪ Bt+1,2k . (2)

Therefore, the partition Pt+1 is a refinement of Pt, and the Ft form a filtration:
Ft ⊂ Ft+1. the Pt+1 is a refinement of Pt. The function X(ω) is measurable in
Ft if it is constant on sevel t diadic blocks. X1 ∈ F1 only if X1(ω) is constant.
X2 ∈ F2 if it has one constant value on the first half (1 ≤ ω ≤ 2T−1), and also
on the second half. These constants can be different. We will return to this
example after discussing martingales.

1.6. Martingales: A real valued adapted stochastic process, Ft, is a martin-
gale1 if

E[Ft+1 | Ft] = Ft . (3)

The tower property then implies that

E[Ft+2 | Ft] = E
[ (

E [Ft+2 | Ft+1]
)
| Ft

]
= E [Ft+1 | Ft] = Ft .

More generally, if s > 0, E [Ft+s | Ft] = Ft.
If we take the overall expectation of both sides we see that the expectation

value does not depend on t, E[Ft+1] = E[Ft]. The martingale property says
more. Whatever information you might have at time t notwithstanding, still
the expectation of future values is the present value. There is a gambling in-
terpretation: Ft is the amount of money you have at time t. No matter what

1For finite Ω this is the whole story. For countable Ω we also assume that the sums defining
E[Xt] converge absolutely, E[|Xt|] < ∞. This implies that the conditional expectations
E[Xt + 1 | Ft] are well defined.
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has happened, your expected winnings at between t and t + 1, the “martingale
difference” Yt+1 = Ft+1 − Ft, has zero expected value. You can also think of
martingale differences as a generalization of independent random variables. If
the random variables Yt were actually independent, then the sums Ft =

∑t

k=1
Yt

would form a martingale (using the Ft, generated by the Y1, . . ., Yt). The reader
should check this.

1.7. Examples: A random walk is a martingale if it has zero drift. One
general way to get a martingale is to start with a random variable, F (ω), and
define Ft = E[F | Ft]. If we apply this to a Markov chain with the minimal
filtration Ft, and F is a final time reward F = V (X(T )), then Ft = f(X(t), t)
as in the previous lecture. If we apply this to the diadic filtration of Paragraph
5, with uniform probability P (ω) = 2−T for ω ∈ Ω, we get the diadic martingale
with Ft(ω) constant on the diadic blocks (1) and equal to the average of F over
the block ω is in. In particular, if ω ∈ Bt,k, then Ft(ω) is the average of the two
values of Ft+1 on the blocks Bt+1,2k−1 and Bt+1,2k, as in (2).

1.8. A lemma on conditional expectation: In working with martingales we
often make use of a basic lemma about conditional expectation. Suppose U(ω)
and Y (ω) are real valued random variables and that U ∈ F . Then

E[UY | F ] = UE[Y | F ] . (4)

We see this using classical conditional expectation over the sets in the partition
defining F . Let B be one of these sets. Let yB = E[Y | ω ∈ B] be the value of
E[Y | F ] for ω ∈ B. We know that U(ω) is constant in B because U ∈ F . Call
this value uB. Then E[UY | B] = uBE[Y | B] = ubyb. But this is the value of
UE[Y | F ] for ω ∈ B. Since each ω is in some B, this proves (4) for all ω.

1.9. Doob’s principle: This lemma lets us make new martingales from
old ones. Let Ft be a martingale and Yt = Ft − Ft−1 the martingale differ-

ences (called innovations by statisticians and returns in finance). We use the
convention that F−1 = 0 so that F0 = Y0. The martingale condition is that
E[Yt+1 | Ft] = 0. Clearly Ft =

∑t

t′=0
Yt′ .

Suppose that at time t we are allowed to place a bet of any size2 on the as
yet unknown martingale difference, Yt+1. Let Ut ∈ Ft be the size of the bet.
The return from betting on Yt will be Ut−1Yt, and the total accumulated return
up to time t is

Gt = U0Y1 + U1Y2 + · · · + Ut−1Yt . (5)

Because of the lemma (4), the betting returns have E[UtYt+1 | Ft] = 0, so
E[Gt+1 | Ft] = Gt and Gt also is a martingale.

The fact that Gt in (5) is a martingale sometimes is called Doob’s principle

or Doob’s theorem after the probabilist who formulated it. A special case below
for stopping times is Doob’s stopping time theorem or the optional stopping

2We may have to require that the bet have finite expected value.
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theorem. They all say that strategizing on a martingale never produces anything
but a martingale. Nonanticipating strategies on martingales do not give positive
expected returns.

1.10. Correlation and dependence: If Ft is a martingale, then the innovations
Yt = Ft − Ft−1 are uncorrelated. For example, since E[Yt] = E[Yt−1] = 0, we
have cov[Yt, Yt−1] = E[YtYt−1] = 0 (since Yt−1 ∈ Ft−1). A martingale is called a
random walk if the innovations are iid mean zero random variables. The lattice
random walk of lecture 2 is a martingale if the drift is zero (a = c). If we

modulate a random walk using (5), then the innovations Ỹt = Ut−1Yt will no
longer be independent, though the correlation still is zero.

The lack of correlation gives the useful fact that the variance of a martingale
is the sum of the variances of its innovations:

var[Ft] =

t∑

t′=0

var[Yt′ ] . (6)

In particular, if the Yt are iid with variance σ2 = E[Y 2
t ], then the modulated

martingale (5) has

E
[
G2

t

]
= σ2

t−1∑

t′=0

E
[
U2

t′

]
. (7)

1.11. Relation to the Ito integral: The Ito integral with respect to Brownian
motion is a continuous time limit of sums like (5). Like these, the Ito integral
turns one martingale, Brownian motion, into another. The continuous time
version of (7) is the Ito isometry formula, which is very helpful in the theory of
the Ito integral.

1.12. Weak and strong efficient market hypotheses: It is possible that the
random variables Ft form a martingale with respect to their minimal filtration,
Ft, but not with respect to an enriched filtration Gt ⊃ Ft. The simplest example
would be the algebras Gt = Ft+1, which already know the value of Ft+1 at time
t. Note that the Ft also are a stochastic process with respect to the Gt. The
weak efficient market hypothesis is that e−µtSt is a martingale (St being the
stock price and µ its expected growth rate) with respect to its minimal filtra-
tion. Technical analysis means using trading strategies that are nonanticipating
with respect to the minimal filtration. Therefore, the weak efficient market hy-
pothesis says that technical trading does not produce better returns than buy
and hold. Any extra information you might get by examining the price history
of S up to time t is already known by enough people that it is already reflected
in the price St.

The strong efficient market hypothesis states that e−µtSt is a martingale
with respect to the filtration, Gt, representing all the public information in the
world. This includes the previous price history of S and much more (prices of
related stocks, corporate reports, market trends, etc.).
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1.13. Investing with Doob: Economists sometimes use Doob’s principle and
the efficient market hypotheses to make a point about active trading in the
stock market. Suppose that Ft, the price of a stock at time t, is a martingale3.
Suppose that at time t we all the information in Ft, and choose an amount,
Ut, to invest at time t. The fact that the resulting accumulated, Gt, has zero
expected value is said to show that active investing is no better than a “buy
and hold” strategy that just produces the value Ft. The well known book A

Random Walk on Wall Street is mostly an exposition of this point of view.
This argument breaks down when applied to non martingale processes, such as
stock prices over longer times. Active trading strategies such as (5) may produce
reduce the risk more than enough to compensage risk averse investors for small
amounts of lost expected value. Merton’s optimal dynamic investment analysis
is a simple example of an active trading strategy that is better for some people
than passive buy and hold.

1.14. Stopping times: We have Ω and the expanding family Ft. A stopping
time is a function τ(ω) that is one of the times 1, . . ., T , so that the event
{τ ≤ t} is in Ft. Stopping times might be thought of as possible strategies.
Whatever your criterion for stopping is, you have enough information at time t

to know whether you should stop at time t. Many stopping times are expressed
as the first time something happens, such as the first time Xt > a. We cannot
ask to stop, for example, at the last t with Xt > a because we might not know
at time t whether Xt′ > a for some t′ > t.

1.15. Doob’s stopping time theorem for one stopping time: Because stop-
ping times are nonanticipating strategies, they also cannot make money from a
martingale. One version of this statement is that E[Xτ ] = E[X1]. The proof of
this makes use of the events Bt, that τ = t. The stopping time hypothesis is
that Bt ∈ Ft. Since τ has some value 1 ≤ τ ≤ T , the Bt form a partition of Ω.
Also, if ω ∈ Bt, τ(ω) = t, so Xτ = Xt. Therefore,

E[X1] = E[XT ]

=

T∑

t=1

E[XT | Bt]P (Bt)

=
T∑

t=1

E[Xτ ]P (τ = t)

= E[Xτ ] .

In this derivation we made use of the classical statement of the martingale
property, if B ∈ F⊔ then E[XT | B] = E[Xt | B]. In our B = Bt, Xt = Xτ .

This simple idea, using the martingale property applied to the partition
Bt, is crucial for much of the theory of martingales. The idea itself was first
used Kolmogorov in the context of random walk or Brownian motion. Doob

3This is a reasonable approximation for much short term trading
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realized that Kolmogorov’s was even simpler and more beautiful when applied
to martingales.

1.16. Stopping time paradox: The technical hypotheses above, finite state
space, bounded stopping times, may be too strong, but they cannont be com-
pletely ignored, as this famous example shows. Let Xt be a symmetric random
walk starting at zero. This forms a martingale, so E[Xτ ] = 0 for any stopping
time, τ . On the other hand, suppose we take τ = min(t | Xt = 1). Then Xτ = 1
always, so E[Xτ ] = 1. The catch is that there is no T with τ(ω) ≤ T for all
ω. Even though τ < ∞ “almost surely” (more to come on that expression),
E[τ ] = ∞ (see previous lecture). Even that would be OK if the possible values
of Xt were bounded. Suppose you choose T and set τ ′ = min(τ, T ). That
is, you wait until Xt = 1 or t = T , whichever comes first, to stop. For large
T , it is very likely that you stopped for Xt = 1. Sill, those paths that never
reached 1 probably drifted just far enough in the negative direction so that their
contribution to the overall expected value cancels the 1 to yield E[Xτ ′ ] = 0.

1.17. Another stopping times theorem: Suppose we have an increasing
family of stopping times, 1 ≤ τ1 ≤ τ2 · · ·. In a natural way the random variables
Y1 = Xτ1

, Y2 = Xτ2
, etc. also form a martingale. This is a final elaborate way

of saying that strategizing on a martingale is a no win game.

1.18. Wald’s formula:
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