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1 Continuous probability

1.1. Introduction: Recall that a set Ω is discrete if it is finite or countable.
We will call a set continuous if it is not discrete. Many of the probability
spaces used in stochastic calculus are continuous in this sense (examples below).
Kolmogorov1 suggested a general framework for continuous probability based
on abstract integration with respect to abstract probability measures. The
theory makes it possible to discuss general constructions such as conditional
expectation in a way that applies to a remarkably diverse set of examples.

The difference between continuous and discrete probability is the difference
between integration and summation. Continuous probability cannot be based
on the formula

P (A) =
∑

ω∈A

P (ω) . (1)

Indeed, the typical situation in continuous probability is that any single outcome
has probability zero: P ({ω}) = 0 for all ω ∈ Ω.

As we explain below, the classical formalism of probability densities also does
not apply in many of the situations we are interested in. Abstract probability
measures give a framework for working with probability in path space, as well
as more traditional discrete probability and probabilities given by densities on
Rn.

These notes outline the Kolmogorov’s formalism of probability measures for
continuous probability. We leave out a great number of details and mathemat-
ical proofs. Attention to all these details would be impossible within our time
constraints. In some cases we indicate where a precise definition or a complete
proof is missing, but sometimes we just leave it out. If it seems like something
is missing, it may be.

1.2. Examples of continuous probability spaces: A probability space is a set,
Ω, of possible outcomes, together with a σ−algebra, F , of measurable events.
This section discusses only the sets Ω. The corresponding algebras are discussed
below.

R, the real numbers. If x0 is a real number and u(x) is a probability density,
then the probability of the event Br(x0) = {x0 − r ≤ X ≤ x0 + r} is

P ([x0 − r, x0 + r]) =

∫ x0+r

x0−r

u(x)dx → 0 as r → 0.

1The Russian mathematician Kolmogorov was active in the middle of the 20th century.
Among his many lasting contributions to mathematics are the modern axioms of probability
and some of its most important theorems. His theories of turbulent fluid flow anticipated
modern fractals be several decades.
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Thus the probability of any individual outcome is zero. An event with
positive probability (P (A) > 0) is made up entirely of outcomes x0 ∈ A,
with P (x0) = 0. Because of countable additivity (see below), this is only
possible when Ω is uncountable.

Rn, sequences of n numbers (possibly viewed as a row or column vector depend-
ing on the context): X = (X1 . . . , Xn). Here too if there is a probability
density then the probability of any given outcome is zero.

SN . Let S be the discrete state space of a Markov chain. The space ST

is the set of sequences of length T of elements of S. An element of ST

may be written x = (x(0), x(1), · · · , x(T − 1)), with each of the x(t) in
S. It is common to write xt for x(t). An element of SN is an infinite se-
quence of elements of S. The “exponent” N stands for “natural numbers”.
We misuse this notation because ours start with t = 0 while the actual
natural numbers start with t = 1. We use SN when we ask questions
about an entire infinite trajectory. For example the hitting probability
is P (X(t) = 1 for some t ≥ 0). Cantor proved that SN is not countable
(whenever the state space has more than one element). In most cases,
the probability of any particular infinite sequence is zero. For example,
suppose the transition matrix has P11 = .6 and X(0) = 1 (so u0(1) = 1).
Let x be the infinite sequence that never leaves state 1: x = (1, 1, 1, · · ·).
Then P (x) = u0(1)·.6·.6 · · ·. Multiplying together an infinite number of .6
factors should give the answer P (x) = 0. More generally, if the transition
matrix has Pjk ≤ r < 1 for all (j, k), then P (x) = 0 for any single infinite
path.

C([0, T ] → R), the path space for Brownian motion. The C stands for “con-
tinuous”. The [0, T ] is the time interval 0 ≤ t ≤ T ; the square brackets
tell us to include the endpoints (0 and T in this case). Round parentheses
(0, T ) would mean to leave out 0 and T . The final R is the “target” space,
the real numbers in this case. An element of Ω is a continuous function
from the interval [0, T ] to R. This function could be called X(t) or Xt (for

0 ≤ t ≤ T ). In this space we can ask questions such as P (
∫ T

0
X(t)dt > 4).

1.3. Probability measures: Let F be a σ−algebra of subsets of Ω. A
probability measure is a way to assign a probability to each event A ∈ F . In
discrete probability, this is done using (1). In Rn a probability density leads to
a probability measure by integration

P (A) =

∫

A

u(x)dx . (2)

There are still other ways to specify probabilities of events in path space. All
of these probability measures satisfy the same basic axioms.

Suppose that for each A ∈ F we have a number P (A). The numbers P (A)
form a probability measure if
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i. If A ∈ F and B ∈ F are disjoint events, then P (A ∪ B) = P (A) + P (B).

ii. P (A) ≥ 0 for any event A ∈ F .

iii. P (Ω) = 1.

iv. If An ∈ F is a sequence of events each disjoint from all the others and
∪∞

n=1An = A, then
∑∞

n=1 P (An) = P (A).

The last property is called countable additivity. It is possible to consider prob-
ability measures that are not countably additive, but is not bery useful. Other
properties of probabilities follow from these. For example, if Ac is the event
that A did not happen, then P (Ac) = 1 − P (A) since A and Ac are disjoint
events and A ∪ Ac = Ω.

1.4. Example, discrete probability: If Ω is discrete, we may take F to be
the set of all events (i.e. all subsets of Ω). If we know the probabilities of each
individual outcome, then the formula (1) defines a probability measure. The
axioms (i), (ii), and (iii) are clear. The last, countable additivity, can be verified
given a solid undergraduate analysis course.

1.5. Generating a probability measure: It is rare in continuous probability
that one can define P (A) for all A ⊆ Ω. Usually, there are non measurable events
whose probability one does not try to define (see below). This is not related to
partial information, but is an intrinsic aspect of continuous probability. Instead,
we find a class of basic events, A, for which P (A) is easy to define. We then
take F to be the σ−algebra these events generate. The Kolmogorov extension

theorem, which we do not even state, then tells us (in favorable cases) that P (A)
also is defined for any A ∈ F . Non measurable events are artificial in the sense
that they cannot be represented as limits of basic events.

1.6. Borel sets: In most applications in stochastic calculus, the basic
sets are balls. Events in the σ−algebra generated by balls are called Borel

sets.2 In Rn, the open ball with center x0 and radius r > 0 is Br(x0) =
{x with |x − x0| < r}. A “ball” in one dimension is an interval. In two di-
mensions it is a disk. Note that the ball is solid, as opposed to the hollow
sphere, Sr(x0) = {x with |x − x0| = r}. The condition |x − x0| ≤ r, instead of
|x − x0| ≤ r, defines a closed ball. The σ−algebra generated by open balls is
the same as that generated by closed balls (check this if you wish). You also can
show (if you wish) that the σ− algebra generated by balls contains, for example,
rectangles, smooth curves, etc.

1.7. Borel sets in path space: The definition of Borel sets works the same
way in the path space of Brownian motion, C([0, T ], R). Let x0(t) and x(t) be

2The larger σ−algebra of Lebesgue sets is more of a nuisance than a help, because the
question of which events are measurable depends on which probability measure is being used.
It is hard to compare different probability measures when even the σ−algebras are different.
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two continuous functions of t. The distance between them in the sup norm is

‖x − x0‖ = sup
0≤t≤T

|x(t) − x0(t)| .

We often use double bars to represent the distance between functions and single
bar absolute value signs to represent the distance between numbers or vectors
in Rn. As before, the open ball of radius r about a path x0 is the set of all
paths with ‖x − x0‖ < r.

1.8. The σ−algebra for Markov chain path space: There is a convenient
limit process that defines a useful σ−algebra on SN , the infinite time horizon
path space for a Markov chain. We have the algebras FT generated by the first
T + 1 states x(0), x(1), . . ., x(T ). We take F to be the σ−algebra generated
by all these. Note that the event A = {X(t) 6= 1 for t ≥ 0} is not in any of the
FT . However, the event AT = {X(t) 6= 1 for 0 ≤ t ≤ T } is in FT . Therefore
A = ∩T≥0AT must be in any σ−algebra that contains all the FT . Also note
that the union of all the FT is an algebra of sets, though it is not a σ−algebra.

1.9. Non measurable sets (technical aside): A construction demonstrates that
non measurable sets are unavoidable. Let Ω be the unit circle. The simplest
probability measure on Ω would seem to be uniform measure (divided by 2π so
that P (Ω) = 1). This measure is rotation invariant: if A is a measurable event
having probability P (A) then the event A + θ = {x + θ | x ∈ A} is measurable
and has P (A + θ) = P (A). It is possible to construct a set B and a (countable)
sequence of rotations, θn, so that the events B + θk and B + θn are disjoint if
k 6= n and

⋃
n (B + θn) = Ω. This set cannot be measurable. If it were and

µ = P (B) then there would be two choices: µ = 0 or µ > 0. In the former case
we would have P (Ω) =

∑
n P (B + θn) =

∑
n 0 = 0, which is not what we want.

In the latter case, again using countable additivity, we would get P (Ω) = ∞.
The construction of the set B starts with a description of the θn. Write n

in base ten, flip over the decimal point to get a number between 0 and 1, then
multiply by 2π. For example for n = 130, we get θn = θ130 = 2π · .031. Now
use the θn to create an equivalence relation and partition of Ω by setting x ∼ y
if x = y + θn (mod 2π) for some n. The reader should check that this is an
equivalence relation (x ∼ y → y ∼ x, and x ∼ y and y ∼ z → x ∼ z). Now,
let B be a set that has exactly one representative from each of the equivalence
classes in the partition. Any x ∈ Ω is in one of the equivalence classes, which
means that there is a y ∈ B (the representative of the x equivalence class) and
an n so that y + θn = x. That means that any x ∈ Ω has x ∈ B + θn for some
n, which is to say that

⋃
n (B + θn) = Ω. To see that B + θk is disjoint from

B + θn when k 6= n, suppose that x ∈ B + θk and x ∈ B + θn. Then x = y + θk

and x = z + θn for y ∈ B and z ∈ B. But (and this is the punch line) this
would mean y ∼ z, which is impossible because B has only one representative
from each equivalence class.

The possibility of selecting a single element from each partition element
without having to say how it is to be done is the axiom of choice. It is impossible
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to create a non-measureable set without the axiom of choice (this is a deep and
obscure theorem in set theory). In practical applications of probability it might
happen that an event is not in some σ−algebra because there is not enough
information. It never happens that an event is not measureable because of the
existence of non-measurable sets as above.

1.10. Probability measures in Rn: Suppose u(x) is a probability density in
Rn. If A is an event made from finitely many balls by set operations, we can
define P (A) by integrating, as in (2). This leads to a probability measure on
Borel sets corresponding to the density u.

1.11. Singular probability measures in Rn: There are many interesting
probability measures in Rn that do not have proper probability densities. For
example, if the “random” variable, X takes only the value x0, the probability
measure is called a point mass, or delta function3 If A is a Borel set, the point
mass measure is defined by Px0(A) = 1 if x0 ∈ A, and Px0 = 0 if x0 /∈ A.

There also are mixtures of point masses. Suppose we have points xk ∈ Rn,
and probability weights qk > 0 (and

∑
k qk = 1), there the measure that gives

X probability qk to be at xk is
∑

k qkPkk
. It is given by P (A) =

∑
k ∈ Aqk.

Besides being concentrated on discrete points as above, a probability measure
in the plane (Ω = R2) can be concentrated on a curve, C. If A ⊆ R2 is disjoint
from C then P (A) = 0. For example, suppose U ∈ R is a univariate random
variable with uniform probability density and X = (X1, X2) ∈ R2 is given by
X1 = cos(U), X2 = sin(U). This defines a probability measure concentrated on
the unit circle in the plane.

1.12. Measurable functions: Let Ω be a probability space with a σ−algebra
F . Let f(ω) be a function defined on Ω. In discrete probability, f was measur-
able with respect to F if the sets Ba = {ω | f(ω = a)} all were measurable. In
continuous probability, this definition is replaced by the condition that the sets
Aab = {ω | a ≤ f(ω) ≤ b} are measurable. Because F is countably additive, and
because the event a < f is the (countable) union of the events a + 1

n ≤ f , this

is the same as requiring all the sets Ãab = {ω | a < f(ω) < b} to be measurable.
If Ω is discrete (finite or countable), then the two definitions of measurable
function agree.

In continuous probability, the notion of measurability of a function with
respect to a σ−algebra plays two roles. The first, which is purely technical,
is that f is sufficiently “regular” (meaning not crazy) that abstract integrals
(defined below) make sense for it. The second, particularly for smaller algebras
G ⊂ F , again involves incomplete information. A function that is measurable
with respect to G not only needs to be regular, but also must depend on fewer

3English Physicist Paul A. M. Dirac defined a generalized function, δ(x), with the property

that
∫

b

a
δ(x)dx = 1 if a ≤ 0 ≤ b and

∫
b

a
δ(x)dx = 0 if b < 0 or a > 0. It is clear that δ(x) = 0

if x 6= 0. If δ(x) were an honest function, this would imply that
∫

b

a
δ(x)dx = 0 for any a and

b.
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variables (possibly in some abstract sense).

1.13. Integration with respect to a measure: We want to define integration
and expected value for abstract probability measures. The strategy is to list
properties we want this abstract integration to have, then show that there is
an operation with these properties. As with the Riemann integral of calculus,
we usually do not return to the definition of the integral every time we want to
evaluate one.

The definition of integration with respect to a general probability measure
is easier than the definition of the Riemann integral. The integral is written

E[f ] =

∫

ω∈Ω

f(ω)dP (ω) .

We will see that in Rn with a density u, this agrees with the classical definition

E[f(X)] =

∫

Rn

f(x)u(x)dx ,

if we write dP (x) = u(x)dx. Note that the abstract variable ω is replaced by the
concrete variable, x, in this concrete situation. The general definition is forced
on us once we make the natural requirements

i. If A ∈ F is any event, then E[1A] = P (A). The integral of the indicator
function if an event is the probability of that event.

ii. If f1 and f2 have f1(ω) ≤ f2(ω) for all ω ∈ Ω, then E[f1] ≤ E[f2]. (Integra-
tion is monotone.)

iii. For any reasonable functions f1 and f2 (e.g. bounded), we have E[af1 +
bf2] = aE[f1] + bE[f2]. (Linearity of integration).

1.14. Integral limit theorems: There are limit theorems for abstract integrals
that are related to the property of countable additivity of σ−algebras and prob-
ability measures. Suppose fn(ω) is a sequence of functions so that fn(ω) → f(ω)
for every ω as n → ∞. Limit theorems are conditions under which we know
that ∫

fn(ω)dP (ω) = E [fn] → E [f ] . (3)

For example, this is true the fn are uniformly bounded (there is an M with
|fn(ω)| ≤ M for every n and ω).

The limit theorems also can be expressed as countable additivity, finding
conditions under which

∞∑

k=1

E [gk] = E

[ ∞∑

k=1

gk

]
. (4)
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This is the same as (3) because we can take fn(ω) =
∑n

k=1 gk(ω). For each ω,
(this is the definition of an infinite sum)

f(ω) = lim
n→∞

fn(ω) =

∞∑

k=1

gk(ω) .

Also,

lim
n→∞

E [fn] =

∞∑

k=1

E [gk] .

Just below, we will use the simple monotone convergence theorem. It states
that (3) holds if f1(ω) ≥ 0 for all ω (written simply f1 ≥ 0), and fn+1 ≥ fn

for all n. Part of the theorem is that if either side is infinite, the other also is
infinite. This may be restated as saying that (4) holds whenever gk ≥ 0 for all
k.

1.15. Simple functions: A function is a simple function if there are events
Ak, and weights wk, so that f =

∑
k wk1Ak

. Properties (i) and (iii) imply that
the expectation of a simple function is

E[f ] =
∑

k

wkP (Ak) . (5)

The monotone convergence theorem formula (4) suggests that this should be true
for infinite sums provided wk ≥ 0 for all k. The definition of simple function
and the formula (5) do not depend on the Ak being disjoint, though they often
are in specific applications.

We indicate just a few of the technicalities involved with this definition. First
one should check that it depends only on f . If f =

∑
l ul1Bl

(different weights
ul and events Bl ∈ F), then

∑

k

wkP (Ak) =
∑

l

ulP (Bl) . (6)

To see what this means, suppose the Ak are disjoint, the wk are equal and the
single B event is B = ∪kAk. Then (6) is equivalent to

∑
k P (Ak) = P (B),

which is countable additivity of the probability measure P . Second is the fact
that the definition (5) is additive. If g =

∑
k vk1Ak

, then

E [f + g] =
∑

k

(wk + vk)P (Ak) =
∑

k

wkP (Ak) +
∑

k

vkP (Ak) ,

the last being true when the wk and vk are non-negative. We can assume that f
and g are defined using the same events Ak because of (6) (think this through).
Finally, one can verify the monotone convergence theorem for simple functions
converging to a simple function. It suffices to do this when the simple function
has the form f = w1A (a single event in the sum).
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1.16. General measurable functions: The monotonicity requirement (ii)
above and the formula (5) allow us to define the abstract integral of any nonneg-
ative measurable function. Suppose f is a nonnegative function: 0 ≤ f(ω) ≤ M
for all ω ∈ Ω. Choose a small number ǫ = 2−n, for k ≥ 0 define the heights
hk = ǫ(k−1), and define the4 ring sets Ak = {hk−1 ≤ f < hk}. The Ak depend
on ǫ but we do not indicate that. Although the events Ak might be compli-
cated, fractal, or whatever, each of them is measurable. A simple function that
approximates f is fn =

∑
k hk−11Ak

. This fn takes the value hk−1 on the sets
Ak. Note that fn(ω) ≤ f(ω) for each ω ∈ Ω, though by at most ǫ. Property (ii)
implies that (if E[f ] is defined)

E[f ] ≥ E[fn] =
∑

k

hk−1P (Ak) .

In the same way, we can consider the upper function gn =
∑

k hk1Ak
, which

has gn ≥ f so

E[f ] ≤ E[gn] =
∑

k

hkP (Ak) .

The reader can check that fn ≤ fn+1 ≤ f ≤ gn+1 ≤ gn and that gn−fn ≤ ǫ (i.e.
gn(ω) − fn(ω) ≤ ǫ for all ω). Therefore E[gn] − E[fn] ≤ ǫ = 2−n, the numbers
E[fn] form an increasing sequence, and the E[gn] are a decreasing sequence. All
this implies (think this through) that the sequences E[fn] and E[gn] converge
to the same number converging to the same number, which is the only possible
value of E[f ] consistent with (i), (ii), and (iii).

It is sometimes said that the difference between classical (Riemann) integra-
tion and abstract integration (here) is that the Riemann integral cuts the x axis
into little pieces, while the abstarct integral cuts the y axis (which is what the
simple function approximations amount to).

1.17. Markov chain probability measures on SN : Let A = ∪t≥0Ft as before.
The probability of any A ∈ A is given by the probability of that event in Ft

if A ∈ Ft. Therefore P (A) is given by a formula like (1) for any A ∈ A.
Let F be the σ−algebra generated by A. The Kolmogorov extension theorem
allows us to conclude (once we have verified its hypotheses) that there is a
unique countable additive measure on F that agrees with P (A) for A ∈ A. For
example, suppose X(t) is simple random walk on the interval [0, L] and A is the
event {X(t) = 0 before X(t) = L}. This is in F but not in A.

1.18. Conditional expectation: We have a random variable X(ω) that is
measurable with respect to the σ−algebra, F . We have σ−algebra that is a
sub algebra: G ⊂ F . We want to define the conditional expectation Y = E[X |
G]. In discrete probability this is done using the partition defined by G. The
partition is less useful because it probably is uncountable, and because each
partition element, B(ω) = ∩A (the intersection being over all A ∈ G with

4Take f = f(x, y) = x2 + y2 in the plane to see why we call them ring sets.

8



ω ∈ A), may have P (B(ω)) = 0 (examples below). This means that we cannot
apply Bayes’ rule directly.

The definition is that Y (ω) is the random variable measurable with respect
to G that best approximates X in the least squares sense

E[(Y − X)2] = min
Z∈G

E[(Z − X)2] .

This is one of the definitions we gave before, the one that works for continuous
and discrete probability. In the theory, it is possible to show that there is a
minimizer and that it is unique.

1.19. Generating a σ−algebra: When the probability space, Ω, is finite, we
can understand an algebra of sets by using the partition of Ω that generates the
algebra. This is not possible for continuous probability spaces. Another way
to specify an algebra for finite Ω was to give a function X(ω), or a collection
of functions Xk(ω) that are supposed to be measurable with respect to F . We
noted that any function measurable with respect to the algebra generated by
functions Xk is actually a function of the Xk. That is, if F ∈ F (abuse of
notation), then there is some function u(x1, . . . , xn) so that

F (ω) = u(X1(ω), . . . , Xn(ω)) . (7)

The intuition was that F contains the information you get by knowing the
values of the functions Xk. Any function measurable with respect to this alge-
bra is determined by knowing the values of these functions, which is precisely
what (7) says. This approach using functions is often convenient in continuous
probability.

If Ω is a continuous probability space, we may again specify functions Xk

that we want to be measurable. Again, these functions generate an algebra,
a σ−algebra, F . If F is measurable with respect to this algebra then there is
a (Borel measurable) function u(x1, . . .) so that F (ω) = u(X1, . . .), as before.
In fact, it is possible to define F in this way. Saying that A ∈ F is the same
as saying that 1A is measurable with respect to F . If u(x1, . . .) is a Borel
measurable function that takes values only 0 or 1, then the function F defined by
(7) defines a function that also takes only 0 or 1. The event A = {ω | F (ω) = 1
has (obviously) F = 1A. The σ−algebra generated by the Xk is the set of
events that may be defined in this way. A complete proof of this would take a
few pages.

1.20. Example in two dimensions: Suppose Ω is the unit square in two
dimensions: (x, y) ∈ Ω if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The “x coordinate function”
is X(x, y) = x. The information in this is the value of the x coordinate, but not
the y coordinate. An event measurable with respect to this F will be any event
determined by the x coordinate alone. I call such sets “bar code” sets. You can
see why by drawing some. A function f(x, y) is measurable with respect to the
bar code algebra if there is a function u(x) so that f(x, y) = u(x).
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1.21. Marginal density and total probability: The abstract situation is that
we have a probability space, Ω with generic outcome ω ∈ Ω. We have some
functions (X1(ω), . . . , Xn(ω)) = X(ω). With Ω in the background, we can ask
for the joint distribution of (X1, . . . , Xn). If this distribution has a probability
density (ODF), we call it u(x1, . . . , xn). A formal definition of u would be that
if A ⊆ Rn, then

P (X(ω) ∈ A) =

∫

x∈A

u(x)dx . (8)

Suppose we neglect the last variable, Xn, and consider the reduced vector
X̃(ω) = (X1, . . . , Xn−1) with probability density ũ(x1, . . . , xn−1). This ũ is
the “marginal density” and is given by integrating u over the forgotten variable:

ũ(x1, . . . , xn−1) =

∫ ∞

−∞
u(x1, . . . , xn)dxn . (9)

This is a continuous probability analogue of the law of total probability: in-
tegrate (or sum) over a complete set of possibilities, all values of xn in this
case.

We can prove (9) from (8) by considering a set B ⊆ Rn−1 and the corre-
sponding set A ⊆ Rn given by A = B × R (i.e. A is the set of all pairs x̃, xn)
with x̃ = (x1, . . . , xn−1) ∈ B). The definition of A from B is designed so that
P (X ∈ A) = P (X̃ ∈ B). With this notation,

P (X̃ ∈ B) = P (X ∈ A)

=

∫

A

u(x)dx

=

∫

x̃∈B

∫ ∞

xn=−∞
u(x̃, xn)dxndx̃

P (X̃ ∈ B) =

∫

B

ũ(x̃)dx̃ .

This is exactly what it means for ũ to be the PDF for X̃.

1.22. Classical conditional expectation: Again in the abstract setting ω ∈ Ω,
suppose we have random variables (X1(ω), . . . , Xn(ω)). Now consider a function
f(x1, . . . , xn), its expectated value E[f(X)], and the conditional expectations

v(xn) = E[f(X) | Xn = xn] .

The Bayes’ rule definition of v(xn) has some trouble because both the denomi-
nator, P (Xn = xn), and the numerator,

E[f(X) · 1Xn=xn
] ,

are zero.
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The classical solution to this problem is to replace the exact condition Xn =
xn with an approximate condition having positive (though small) probability:
xn ≤ Xn ≤ xn + ǫ. We use the approximaion

∫ xn+ǫ

xn

g(x̃, ξn)dξn ≈ ǫg(x̃, xn) .

The error is roughly proportional to ǫ2 and much smaller than either the terms
above. With this approximation the numerator in Bayes’ rule is

E[f(X) · 1xn≤Xn≤xn+ǫ] =

∫

x̃∈Rn−1

∫ ξn=xn+ǫ

ξn=xn

f(x̃, ξn)u(x̃, xn)dξndx̃

≈ ǫ

∫

x̃

f(x̃, xn)u(x̃, xn)dx̃ .

Similarly, the denominator is

P (xn ≤ Xn ≤ xn + ǫ) ≈ ǫ

∫

x̃

u(x̃, xn)dx̃ .

If we take the Bayes’ rule quotient and let ǫ → 0, we get the classical formula

E[f(X) | Xn = xn] =

∫
x̃

f(x̃, xn)u(x̃, xn)dx̃∫
x̃ u(x̃, xn)dx̃

. (10)

By taking f to be the characteristic function of an event (all possible events)
we get a formula for the probability density of X̃ given that Xn = xn, namely

ũ(x̃ | Xn = xn) =
u(x̃, xn)∫

x̃
u(x̃, xn)dx̃

. (11)

This is the classical formula for conditional probability density. The integral
in the denominator insures that, for each xn, ũ is a probability density as a
function of x̃, that is ∫

ũ(x̃ | Xn = xn)dx̃ = 1 ,

for any value of xn. It is very useful to notice that as a function of x̃, u and ũ
almost the same. They differ only by a constant normalization. For example,
this is why conditioning Gaussian’s gives Gaussians.

1.23. Modern conditional expectation: The classical conditional expectation
(10) and conditional probability (11) formulas are the same as what comes from
the “modern” definition from paragraph 1.6. Suppose X = (X1, . . . , Xn) has
density u(x), F is the σ−algebra of Borel sets, and G is the σ−algebra generated
by Xn (which might be written Xn(X), thinking of X as ω in the abstract
notation). For any f(x), we have f̃(xn) = E[f | G](xn). Since G is generated by
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Xn, the function f̃ being measurable with respect to G is the same as it’s being
a function of xn. The modern definition of f̃(xn) is that it minimizes

∫

Rn

(
f(x) − f̃(xn)

)2

u(x)dx , (12)

over all functions that depend only on xn (measurable in G).
To see the formula (10) emerge, again write x = (x̃, xn), so that f(x) =

f(x̃, xn), and u(x) = u(x̃, xn). The integral (12) is then

∫ ∞

xn=−∞

∫

x̃∈Rn−1

(
f(x̃, xn) − f̃(xn)

)2

u(x̃, xn)dx̃dxn .

In the inner integral:

R(xn) =

∫

x̃∈Rn−1

(
f(x̃, xn) − f̃(xn)

)2

u(x̃, xn)dx̃ ,

f̃(xn) is just a constant. We find the value of f̃(xn) that minimizes R(xn) by
minimizing the quantity

∫

x̃∈Rn−1

(f(x̃, xn) − g)
2
u(x̃, xn)dx̃ =

∫
f(x̃)2u(x̃, xn)dx̃ + 2g

∫
f(x̃)u(x̃, xn)dx̃ + g2

∫
u(x̃, xn)dx̃ .

The optimal g is given by the classical formula (10).

1.24. Modern conditional probability: We already saw that the modern ap-
proach to conditional probability for G ⊂ F is through conditional expectation.
In its most general form, for every (or almost every) ω ∈ Ω, there should be
a probability measure Pω on Ω so that the mapping ω → Pω is measureable
with respect to G. The measurability condition probably means that for every
event A ∈ F the function pA(ω) = Pω(A) is a G measurable function of ω.
In terms of these measures, the conditional expectation f̃ = E[f | G] would be
f̃(ω) = Eω [f ]. Here Eω means the expected value using the probability measure
Pω. There are many such subscripted expectations coming.

A subtle point here is that the conditional probability measures are defined
on the original probability space, Ω. This forces the measures to “live” on
tiny (generally measure zero) subsets of Ω. For example, if Ω = Rn and G is
generated by xn, then the conditional expectation value f̃(xn) is an average of
f (using density u) only over the hyperplane Xn = xn. Thus, the conditional
probability measures PX depend only on xn, leading us to write Pxn

. Since
f̃(xn) =

∫
f(x)dPxn

(x), and f̃(xn) depends only on values of f(x̃, xn) with
the last coordinate fixed, the measure dPxn

is some kind of δ measure on that
hyperplane. This point of view is useful in many advanced problems, but we
will not need it in this course (I sincerely hope).

12



1.25. Semimodern conditional probability: Here is an intermediate “semi-
modern” version of conditional probability density. We have Ω = Rn, and
Ω̃ = Rn−1 with elements x̃ = (x1, . . . , xn−1). For each xn, there will be a (con-
ditional) probability density function ũxn

. Saying that ũ depends only on xn is
the same as saying that the function x → ũxn

is measurable with respect to G.
The conditional expectation formula (10) may be written

E[f | G](xn) =

∫

Rn−1

f(x̃, xn)ũxn
(x̃)dx̃ .

In other words, the classical u(x̃ | Xn = xn) of (11) is the same as the semi-
modern ũxn

(x̃).

2 Gaussian Random Variables

The central limit theorem (CLT) makes Gaussian random variables important.
A generalization of the CLT is Donsker’s “invariance principle” that gives Brow-
nian motion as a limit of random walk. In many ways Brownian motion is a
multivariate Gaussian random variable. We review multivariate normal random
variables and the corresponding linear algebra as a prelude to Brownian motion.

2.1. Gaussian random variables, scalar: The one dimensional standard

normal, or Gaussian, random variable is a scalar with probability density

u(x) =
1√
2π

e−x2/2 .

The normalization factor 1√
2π

makes
∫ ∞
−∞ u(x)dx = 1 (a famous fact). The

mean value is E[X ] = 0 (the integrand xe−x2/2 is antisymmetric about x = 0).
The variance is (using integration by parts)

E[X2] =
1√
2π

∫ ∞

−∞
x2e−x2/2dx

=
1√
2π

∫ ∞

−∞
x

(
xe−x2/2

)
dx

= − 1√
2π

∫ ∞

−∞
x

(
d

dx
e−x2/2

)
dx

= − 1√
2π

(
xe−x2/2

)∣∣∣∣
∞

−∞
+

1√
2π

∫ ∞

−∞
e−x2/2dx

= 0 + 1

Similar calculations give E[X4] = 3, E[X6] = 15, and so on. I will often write
Z for a standard normal random variable. A one dimensional Gaussian random
variable with mean E[X ] = µ and variance var(X) = E[(X − µ)2] = σ2 has
density

u(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

13



It is often more convenient to think of Z as the random variable (like ω) and
write X = µ+σZ. We write X ∼ N (µ, σ2) to express the fact that X is normal
(Gaussian) with mean µ and variance σ2. The standard normal random variable
is Z ∼ N (0, 1)

2.2. Multivariate normal random variables: The n×n matrix, H , is positive
definite if x∗Hx > 0 for any n component column vector x 6= 0. It is symmetric
if5 H∗ = H . A symmetric matrix is positive definite if and only if all its eigen-
vales are positive. Since the inverse of a symmetric matrix is symmetric, the
inverse of a symmetric positive definite (SPD) matrix is also SPD. An n compo-
nent random variable is a mean zero multivariate normal if it has a probability
density of the form

u(x) =
1

z
e−

1
2x∗Hx , (13)

for some SPD matrix, H . We can get mean µ = (µ1, . . . , µn)∗ either by taking
X + µ where X has mean zero, or by using the density with x∗Hx replaced by
(x − µ)∗H(x − µ).

2.3. Characteristic functions: If X ∈ Rn is a random variable with proba-
bility density u(x), the characteristic function is a function of the dual variable,
ξ = (ξ1, . . . , ξn). It is defined by

û(ξ) = E
[
e−iξ·X]

=

∫

x∈Rn

e−iξ·xu(x)dx . (14)

We can interpret ξ · x as being the product of a row vector, ξ with the column
vector, x, or as the dot product ξ · x =

∑
k ξkxk. The integral (14) is one

form of the Fourier transform of u. The more abstract version E
[
e−iξ·X]

is
particularly useful in probability. It makes sense even when X does not have a
proper probability function. The Fourier inversion formula (which we do not
prove) states that

u(x) =
1

(2π)n

∫

ξ∈Rn

eiξ·xû(ξ)dξ . (15)

The formulas (14) and (15) are similar but not the same. The characteristic
function has −iξ ·x while the inversion formula has the opposite sign iξ ·x. The
inversion formula has a 2π factor. Different definitions of the Fourier transform
put 2π factors in different places, but they must be somewhere.

2.4. Fourier transforms following Dirac: Dirac, in his book Principles of

Quantum Mechanics, gives a simple way to remember the properties of Fourier
transforms. The basic formula is,

∫ ∞

−∞
eitxdt = 2πδ(x) . (16)

5We write H∗ for the transpose of H.
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For example, we can verify the Fourier inversion formula in the one dimensional
case by substituting (14) into (15) and changing the order of integration:

1

2π

∫ ∞

−∞
eiξxû(ξ)dξ =

1

2π

∫ ∞

−∞

∫ ∞

−∞
eiξxe−iξyu(y)dydξ

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
eiξ(x−y)dξ

)
u(y)dy

=
1

2π

∫ ∞

−∞

(
2πδ(x − y)

)
u(y)dy

= u(x) .

We give an informal derivation of the already informal formula (16) below.

2.5. Characteristic function of Gaussians. Characteristic functions are par-
ticularly handy for Gaussian random variables. The simplest case is the char-
acteristic function of a standard normal, which is

û(ξ) = E
[
e−iξZ

]
=

∫ ∞

−∞
e−iξz 1√

2π
e−z2/2dz .

The trick is to complete the square in the exponent:

−1ξz − 1

2
z2 =

−1

2

(
z2 + 2iξz + (iξ)2 − (iξ)2

)
=

−1

2
(z + iξ)2 − ξ2/2 .

Therefore,

û(ξ) = e−ξ2/2 1√
2π

∫ ∞

−∞
e(z+iξ)2/2dz .

It happens that this integral is independent of ξ. If we believe that, then we
can take ξ = 0 and get

û(ξ) = e−ξ2/2 . (17)

We say that the characteristic function of a Gaussian is Gaussian, but this is
not strictly true because there is no 2π factor on the right. Note that 1 =
û(0)E[ei0·Z ] = E[1] as it should.

If iξ were real, then the integral
∫ ∞
−∞ e−(z+iξ)2/2dz would not depend on ξ

because ξ would just cause a shift that does not change the area. To prove the
integral is independent of ξ when iξ is not real, take the derivative with respect
to ξ:

d

dξ

∫
e−(z+iξ)2/2dz =

∫
i(z + iξ)e−(z+iξ)2/2dz = i

∫
d

dz
e−(z+iξ)2/2dz = 0 .

2.6. Scaling of characteristic functions: Suppose X is a univariate ran-
dom variable and Y = aX + b. Let ûX = E

[
e−iξX

]
and ûY = E

[
e−iξY

]
be

15



the corresponding characteristic functions. There is a simple formula for the
characteristic function of Y in terms of that for X :

ûY (ξ) = E
[
e−iξY

]

= E
[
e−iξ(aX+b)

]

= e−iξbE
[
e−i(aξ)X

]

ûY (ξ) = e−iξbûX(aξ) .

In particular, if X ∼ N (µ, σ2), then it may be written X = µ + σZ, where Z is
a standard normal. Therefore, the characteristic function of a N (µ, σ2) is

e−iξµe−σ2ξ2/2 (18)

We also could have found this formula from the integral

1√
2πσ

∫ ∞

−∞
e−iξxe−(x−µ)2/2σ2

dx .

2.7. Linear transformations and characteristic functions: Calculations like
these also work for multivariate random variables. If X ∈ Rn, A is an m × n
matrix, and Y ∈ Rm is given by Y = AX , then

ûY (ξ) = E
[
e−iξY

]
= E

[
e−i(ξA)·X

]
,

so
ûY (ξ) = ûX(ξA) . (19)

Note that ξ is an m component row vector and ξA is an n component row vector,
as it needs to be to be the argument of ûX .

2.8. Choleski factorization: Recall the following facts from linear algebra.6

An n × n matrix, L, is lower triangular if all its entries above the diagonal are
zero: Ljk = 0 for k > j. A symmetric n × n matrix, C, is positive semidefinite

if x∗Cx ≥ 0 for all x ∈ Rn. The difference between positive definite and
semidefinite is that a positive semidefinite matrix may be singular. If C = LL∗

and L is a lower triangular matrix, we say that LL∗ is the Choleski factorization

of C. A symmetric matrix is positive semidefinite if and only if it has a Choleski
factorization. The L, if it exists, is unique. The matrix C is positive definite if
and only if L is nonsingular. If L is nonsingular and M = L−1, then (L∗)−1

=

M−1. If C = LL∗, then C−1 = (L∗)−1 L−1 = M∗M . Note that the transposed
matrix now comes first.

In the univariate case, we get X ∼ N (0, σ2) using X = σZ. The coefficient
in the linear transformation is the square root of the coefficient, σ2, in the

6See, for example, Linear Algebra by Gilbert Strang, or my notes Principles of Scientific

Computing.
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Gaussian probability density formula. Multivariate normal Gaussians have an
n × n matrix, the covariance matrix, instead of the scalar σ2. We will see that
the Choleski factor, L, serves the role of σ in this case.

2.9. Standard multivariate normal: Let Z = (Z1, . . . , Zn)∗ be a multivariate
random variable whose components are independent scalar standard normals.
This is the standard multivariate normal. Its probability density is (Here ‖x‖2

=

x∗x =
∑

k x2
k and ‖ξ‖2

= ξξ∗ =
∑

k ξ2
k. The difference is because x is a column

vector and ξ is a row vector.)

uZ(z) =
1

(2π)n/2
e−‖z2‖2

/2 . (20)

Its characteristic function is (think this through)

ûZ = e−‖ξ2‖2
/2 . (21)

The Fourier inversion formula (15) applied to this pair gives the identity

1

(2π)n/2
e−z∗z/2 =

1

(2π)n/2

∫

η∈Rn

eiηze−ηη∗/2dη . (22)

2.10. Making multivariate normals: We have the tools to understand general
multivariate normals using mappings. Suppose Z is a standard normal and
X = LZ. The characteristic function of X is, using (19), (21), and LL∗ = C,

ûX(ξ) = ûZ(ξL) = exp

(−1

2
(ξL)

∗
(ξL)

)
= e−ξLL∗ξ∗/2 = e−ξCξ∗/2 .

We can use the Fourier inversion formula (15) to find the probability density
u(x). We will change variables in the integral from ξ to η = ξL. This implies
that ξ = ηL−1 = ηM The Jacobian factor is det(L)dξ = dη. Using (22) with
z = Mx, and MM∗ = C−1, the result is

u(x) =
1

(2π)n

∫

ξ∈Rn

eiξ·x exp

(−1

2
(ξL)∗

)
dξ

=
1

(2π)n det(L)

∫

eta∈Rn

eiηMxe−ηη∗/2dη

=
1

(2π)n/2 det(L)
e−x∗M∗Mx/2

u(x) =
1

(2π)n/2 det(L)
e−x∗C−1x/2 (23)

This is precisely the probability density given above for the multivariate normal
(13), if H = C−1.
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To summarize, the probability density/characteristic function pair for a uni-
variate normal is

u(x) =
1√
2π

e−x2/2σ2 ⇐⇒ û(ξ) = e−σ2ξ2/2 . (24)

For a multivariate normal it is

u(x) =
1√

det(C)
· 1

(2π)n/2
e−x∗C−1x/2 ⇐⇒ û(ξ) = e−ξ∗Cξ/2 . (25)

The matrix C plays the role of σ2 in both the density and the characteris-
tic function. It is the covariance matrix of X , as we will see below. The
normalization factor involves

√
detC = det(L) because det(C) = det(LL∗) =

det(L) det(L∗) = det(L)2.

2.11. Linear transformations of multivariate normals: If X is a multivari-
ate normal with covariance matrix CX and Y = AX , then the characteristic
function of Y is given by (19):

ûY (ξ) = ûX(ξA) = exp (−(ξA)CX(ξA)∗) = e−ξCY ξ∗

, (26)

with
CY = ACXA∗ . (27)

The bottom line of all this is that a linear transformation of a multivariate
normal has the characteristic function of a multivariate normal and therefore is
a multivariate normal. Once you know this basic fact, the covariance formula
(27) is easy to derive more directly.

It is interesting if somewhat technical to consider what happens if the linear
transformation A maps Rn to Rm with m > n. In this case, the set of values
Y = AX for all X ∈ Rn is at most a hyperplane of dimension n < M in
Rm. That means that the distribution of Y is singular – there is no proper
probability density for it. Nevertheless, Y is characterized by its perfectly proper
characteristic function (26).

2.12. Moment generating functions: The characteristic function of a ran-
dom variable is closely related to the moment generating function, or simply
generating function E

[
eλX

]
. Just take λ = −iξ. As with the moment gener-

ating function, the characteristic function determines the moments of X . For
example,

∂xûX(ξ) = ∂ξE
[
e−iξX

]
= E

[
∂ξe

−iξX
]

= −iE
[
Xe−iξX

]
.

If ξ has more than one component, this is a vector equation. In particular,
setting ξ = 0 gives

i∂xûX(ξ)

∣∣∣∣
ξ=0

= −E [X ] . (28)
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We can apply this to get second moments as well. The result is (Please check
the signs, which are detemined by several factors of −i.)

E [XjXk] = −∂ξj
∂ξk

ûX(ξ)

∣∣∣∣
ξ=0

. (29)

In particular, for the Gaussian generating function (25), (29) gives

E[XjXk] − Cjk . (30)

This says that the entries of C are the covariances of the components of the
multivariate normal, X .

2.13. Independence and decorrelation: Suppose X1 and X2 are random vari-
ables with a joint PDF u(x1, x2). Suppose they both have mean zero, though this
is only for convenience. The covariance is cov(X1, X2) = E[X1X2]. If the covari-
ance is zero, we say X1 and X2 are uncorrelated. If u(x1, x2) = u1(x1)u2(x2),
then X1 and X2 are independent. It is easy to see that independent random
variables are uncorrelated but uncorrelated variables need not be independent.7

The exception is Gaussian random variables. Let X be a multivariate normal
with mean zero. If the components of X are uncorrelated then Cjk = 0 for j 6= k.
Therefore C and H = C−1 are diagonal and the expression x∗Hx in (25) may
be written

∑
k hkkx2

k. This implies that

u(x) = Const · ex∗Hx = Const ·
∏

k

e−hkkx2
k/2 ,

which in turn implies that the Xk are independent.

2.14. Principal component analysis: Suppose the eigenvalues and eigen-
vectors of C are Cvj = λjvj . The vj are the principal vectors, or principle

directions, and the λj are the principle values of C. The eigenvalue problem for
C is principal component analysis or PCA. We can express x ∈ Rn as a linear
combination of the vj ,

x =

n∑

j=1

yjvj . (31)

This is the principal compenent expansion of x. The weights yj are the principal

components of x with respect to the covariance matrix C. The relations (31)
may be expressed in matrix form as x = V y, where V is the n×n matrix whose
columns are the vj and y = (y1, . . . , yn)∗. Since the eigenvectors of a symmetric
matrix are orthogonal to each other, we may normalize them so that v∗j vk = δjk,
which is the same as saying that V is an orthogonal matrix, V ∗V = I. This
leads to formula for the principal components in (31):

yj = v∗j x . (32)

7For example, if X1, X2 is uniformly distributed in the unit circle, then X1 and X2 are
uncorrelated, but if |X1| > .9 then |X2| < .5 (draw a picture), so they are not independent.
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In matrix form, since V ∗ = V −1, we have y = V ∗x. The matrix form of the
eigenvalue eigenvector relations is CV = V Λ, which may be rewritten V ∗CV =
Λ.

2.15. PCA variables: Let X be a multivariate normal with covariance matric
C and Y = V ∗X . The components Yj are the principal components of X . We
will see that they are independent normals with variances σ2

j = λj . First, Y
is a multivariate normal, since it is a linear transformation of X . Then we use
(27), with A = V ∗ to calculate

CY = V ∗CV = Λ .

This implies that the components of Y are uncorrelated and therefore indepen-
dent.

2.16. Central Limit Theorem: Let X be an n dimensional random variable
with probability density u(x). Let X(1), X(2), . . ., be a sequence of independent
samples of X , that is, independent random variables with the same density u.
Statisticians call this iid (independent, identically distributed). If we need to

talk about the individual components of X(k), we write X
(k)
j for component j

of X(k). For example, suppose we have a population of people. If we choose a
person “at random” and record his or her height (X1) and weight (X2), we get a
two dimensional random variable. If we measure 100 people, we get 100 samples,
X(1), . . ., X(100), each consisting of a height and weight pair. The weight of

person 27 is X
(27)
2 . Let µ = E[X ] be the mean and C = E[(X − µ)(X − µ)∗]

the covariance matrix. The Central Limit Theorem (CLT) states that for large
n, the random variable

R(n) =
1√
n

n∑

k=1

(X(k) − µ)

has a probability distribution close to the multivariate normal with mean zero
and covariance C. One interesting consequence is that if X1 and X2 are uncor-

related then an average of many independent samples will have R
(
1n) and R

(n)
2

nearly independent.

2.17. What the CLT says about Gaussians: The Central Limit Theorem
tells us that if we avarage a large number of independent samples from the
same distribution, the distribution of the average depends only on the mean
and covariance of the starting distribution. It may be surprising that many
of the properties that we deduced from the formula (??) may be found with
almost no algebra simply knowing that the multivariate normal is the limit of
averages. For example, we showed (or didn’t show) that if X is multivariate
normal and Y = AX where the rows of A are linearly independent, then Y is
multivariate normal. This is a consequence of the averaging property. If X is
(approximately) the average of iid random variables Uk, then Y is the average
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of random variables Vk = AUk. Applying the CLT to the averaging of the Vk

shows taht Y is also multivariate normal.
Now suppose U is a univariate random variable with iid samples Uk, and

E[Uk] = 0, E[U2
k = σ2], and E[U4

k ] = a4 < ∞ Define Xn = 1√
n

∑n
k=n Uk. A

calculation shows that E[X4
n] = 3σ4 + 1

na4. For large n, the fourth moment of
the average depends only on the second moment of the underlying distribution.
A multivariate and slightly more general version of this calculation gives “Wick’s
theorem”, an expression for the expected value of a product of components of
a multivariate normal in terms of covariances.
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