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1 Brownian Motion

1.1. Introduction: Brownian motion is the simplest of the stochastic pro-
cesses called diffusion processes. It is helpful to see many of the properties of
general diffusions appear explicitly in Brownian motion. In fact, the Ito calculus
makes it possible to describe any other diffusion process may be described in
terms of Brownian motion. Furthermore, Brownian motion arises as a limit or
many discrete stochastic processes in much the same way that Gaussian random
variables appear as a limit of other random variables throught the central limit
theorem. Finally, the solutions to many other mathematical problems, parti-
cilarly various common partial differential equations, may be expressed in terms
of Brownian motion. For all these reasons, Brownian motion is a central object
to study.

1.2. History: In 1827, an English botanist named Brown looked at pollen
grains in water under a microscope. To his amazement, they were moving ran-
domly. He had no explination for supposedly inert pollen grains, and later
inorganic dust, seeming to swim as though alive. In 1905, Einstein proposed
the explination that the observed “Brownian” motion was caused by individual
water molecules hitting the pollen or dust particles. This allowed him to esti-
mate, for the first time, the weight of a water molecule. This is the modern
view, that the observed random motion of pollen grains is the result of a huge
number of independent and random collisions with tiny water molecules.

1.3. Basics: The mathematical description of Brownian motion involves a
random but continuous function on time, X(t). The standard Brownian motion
starts at x = 0 at time t = 0: X(0) = 0. The displacement, or increment

between time t1 > 0 and time t2 > t1, Y = X(t2) − X(t1), is the sum of a
large number of i.i.d. mean zero random variables, each modeling the result of
one water molecule collision.1 It is natural to suppose that the number of such
collisions is proportional to the time increment. This implies, throught the cen-
tral limit theorem, that Y should be a Gaussian random variable with variance
proportional to t2 − t1. The standard Brownian motion has X normalized so
that the variance is equal to t2 − t1. The random “shocks” (a term used in
finance for any change, no matter how small) in disjoint time intervals should
be independent. If t3 > t2 and Y2 = X(t3)−X(t2), Y1 = X(t2)−Xt1), then Y2

and Y1 should be independent, with variances t3 − t2 and t2 − t1 respectively.
This makes the increments Y2 and Y1 a two dimensional multivariate normal.

1.4. Transition probabilities: The transition probability density for Brownian

1Physicists will recognize this as an oversimplification of Einstein’s theory.
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motion is the probability density for X(t + s) given that X(t) = y. We denote
this by G(y, x, s), the “G” standing for Green’s function. It is much like the
Markov chain transition probabilities P t

y,x except that (i) G is a probability
density as a function of x, not a probability, and (ii) the time variable, t, is
continuous, not discrete. In our case, the increment X(t+s)−X(t), is Gaussian
with variance s. If we learn that X(t) = y, then X(t + s) becomes a Gaussian
with mean y and variance s. Therefore,

G(y, x, s) =
1√
2πs

e−(x−y)2/2s . (1)

1.5. Multiple transitions: We also can write expressions for joint distributions
of multiple transitions. Suppose, for example, that t0 < t1 < t2 and we know
that X(t0) = x0. We find the joint density for X1 = X(t1) and X2 = X(t2) by
multiplying the conditional densities:

U (2)(x0, x1, x2, t0, t1, t2) = ( density for x0 → x1 ) × ( density for x1 → x2 )

= G(x0, x1, t1 − t0) · G(x1, x2, t2 − t1) .

We then substitute the explicit formula (1) and rearrange terms to put this in
the form:

1

2π
· 1√

t1 − t0
· 1√

t2 − t1
· exp

[
−1

2

(
(x1 − x0)

2

t1 − t0
+

(x2 − x1)
2

t2 − t1

)]
. (2)

Here the initial state x0 and the times t0, t1, and t2 are parameters, while x1

and x2 are the “variables”, in the sense that

∫ ∫
U (2)(x0, x1, x2, t0, t1, t2)dx1dx2 = 1 .

You can check this by first integrating over x2, then over x1.
The formula for n transitions is similar. Suppose t0 < t1 < · · · < tn and

~t = (t0, . . . , tn) and ~x = (x0 . . . , xn). Conditional on X(t0) = x0, the joint
density of X1 = X(t1), . . . , Xn = X(tn) is

U (n)(~x,~t) =
n−1∏

k=0

G(xk, xk+1, tk+1 − tk)

=
1

(2π)n/2

n−1∏

k=0

1√
tk+1 − tk

exp

(
−1

2

n−1∑

k=0

(xk+1 − xk)2

tk+1 − tk

)
. (3)

As before, this U (n) is a probability density in the variables x1, . . . , xn. For
n = 1, the case of a single transition, we have

U (1)(x0, x1, t0, t1) = G(x0, x1, t1 − t0) .
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1.6. Consistency: You cannot give just any old probability densities to
replace the joint densities (3). They must satisfy simple consistency conditions.
Having given the joint density for n observations, you also have given the joint
density for any subset of these observations. For example (fixing X(t0) = x0),
the density for X(t2) must be the marginal of the joint density of X((t1), and
X(t2):

U (2)(x0, x2, t0, t2) =

∫ ∞

x1=−∞
U (2)(x0, x1, x2, t0, t1, t2)dx1 .

The explicit direct verification is instructive. We want to show that
∫

x1

U (2)(x0, x1, x2, t0, t1, t2) dx1 = G(x0, x2, t2 − t0) ,

where U (2) is given by (2) and G is given by (1). Fixing x0 and x2, (2) has the
form

U (2) =
1

z
e−Q(x1)/2 ,

where z is the normalization constant. Since Q(x1) is a quadratic function of
x1, it may be written in the form

Q(x1) = (x1 − x1)/σ2 + b ,

where x1 and b depend on x0, x2, t0, t1, and t2. The values of x1 and b may be
found by minimizing Q over x1. The minimum value is b and the minimizing
value of x1 is x1. Setting the derivative to zero gives

∂x1
Q(x1) = ∂x1

(
(x1 − x0)

2

t1 − t0
+

(x2 − x1)
2

t2 − t1

)
= 2

x1 − x0

t1 − t0
− 2

x2 − x1

t2 − t1
= 0 .

This says that the rate of change from x0 to x1 is the same as the rate of change
from x1 to x2:

v =
x1 − x0

t1 − t0
=

x2 − x1

t2 − t1
.

The minimum value of Q is b:

b = Q(x1) =
(x1 − x0)

2

t1 − t0
+

(x2 − x1)
2

t2 − t1
= v2(t1 − t0) + v2(t2 − t1) .

Since v also is the rate of change from x0 to x2, we have v = (x2 −x0)/(t2 − t0),
and

b =
− (x2 − x0)

2

t2 − t0
.

We find σ2 from

1

σ2
=

1

2
∂2

x1

(
(x1 − x0)

2

t1 − t0
+

(x2 − x1)
2

t2 − t1

)
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=
1

t1 − t0
+

1

t2 − t1

=
t2 − t0

(t1 − t0)(t2 − t1)
.

With all this, we are ready to calculate the integral:
∫

x1

e−(x1−x1)2/2σ2+bdx1 =
√

2πσeb

=
√

2π

√
(t1 − t0)(t2 − t1)

t2 − t0
e−(x2−x0)

2/2(t2−t0) ,

which is exactly what it takes to turn (2) into (1).
The basic probability model of Brownian motion also implies that the com-

patibility conditions are satisfied. The U (1) density says that we get X(t2) from
X(t0) by adding an increment that is Gaussian with mean zero and variance
t2 − t1. The U (2) density says that we get X(t2) from X(t1) by adding a Gaus-
sian with mean zero and variance t2 − t1. In turn, we get X(t1) from X(t0)
by adding an increment having mean zero and variance t1 − t0, the increments
being independent of each other. Since they are Gaussian and independent,
their sum is also Gaussian, with mean zero and variance (t2 − t1) + (t1 − t1),
which is the same as the variance in going from X(t0) to X(t2) directly.

1.7. Discretely observed events: The probability densities (3) determine
a probability measure on the probability space Ω = C0([0, T ]; R), with its
σ−algebra of Borel sets. We cannot give a complete proof, and most read-
ers do not want one, but we can give some indications. The point is to show
that (3) determines the probabilities of open balls, since the set of open balls
generates all Borel sets. An open ball in the path space C0([0, T ]; R) is the set
of paths withing distance r from a given path. More precisely, let x(t) be a
given continuous path, then Br(x) is the set of all paths x so that

‖x − x‖ = max
0≤t≤T

|x(t) − x(t)| < r . (4)

So, why does (3) determine P (Br(x))?
The events it does determine are discretely observed events. An event A is

discretely observed if there is a finite (discrete) set of times, 0 = t0 < t1 < · · · <
tn ≤ T , so that we can tell whether x ∈ A be knowing the values xk = x(tk) for
x = 1, . . . , n. This is the same as saying that A is measurable in the σ−algebra
generated by the values, or observations, x(tk). This σ−algebra in turn is
generated by events of the form x ∈ A if ak < x(tk) < bk for 1 ≤ k ≤ n and
some constants ak < bk. But these probabilities are

P (A) =

∫ b1

x1=a1

· · ·
∫ bn

xn=an

U (n)(~x,~t)dx1 · · ·dxn ,

where U (n)(~x,~t) is given by (3).
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Someone who has taken and remembers undergraduate ǫ− δ analysis will be
able to show that Br(x) is a countable intersection (over chosen ~t) then union
(over chosen ǫ) over of sets of the form

x(tk) − (r − ǫ) < x(tk) < x(tk) + (r − ǫ) .

Therefore, if there is a countably additive measure on Ω = C0([0, T ]; R) consis-
tent with (3), it is completely determined.

The formula (3) is a concrete summary of the defining properties of the
probability measure for Brownian motion, Wiener measure: the independent
increments property, the Gaussian distribution of the increments, the variance
being proportional to the time differences, and the increments having mean zero.
It also makes clear that each finite collection of observations forms a multivariate
normal. For any of the events A as in “Technical aside”, we have

P (A) =

∫

x1∈I1

· · ·
∫

xn∈In

U (n)(x1, . . . , xn,~t)dx1 · · · dxn .

1.8. Wiener measure: The probability space for standard Brownian motion
is C0([0, T ], R). As we said before, this consists of continuous functions, X(t),
defined for t in the range 0 ≤ t ≤ T . The notation C0 means2 that X(0) = 0.
The σ−algebra representing full information is the Borel algebra. The infi-
nite dimensional Gaussian probability measure on C0([0, T ], R) that represents
Brownian motion is called Wiener measure3.

This measure is uniquely specified by requiring that for any times 0 = t0 <
t1 < · · · < tn ≤ T , the increments Yk = X(tk+1)−X(tk) are independent Gaus-
sian random variables with var(Yk) = tk+1 − tk. The proof (which we omit) has
two parts. First, it is shown that there indeed is such a measure. Second, it
is shown that there is only one such. All the information we need is contained
in the joint distribution of the increments. The fact that increments from dis-
joint time intervals are independent is the independent increments property. It
also is possible to consider Brownian motion on an infinite time horizon with
probability space C0([0,∞), R).

1.9. Functionals: An element of Ω = C0([0, T ], R) is called X . We de-
note by F (X) a real valued function of X . In this context, such a func-
tion is often called a functional, to keep from confusing it with X(t), which
is a random function of t. This functional is just what we called a “func-
tion of a random variable” (the path X palying the role of the abstract ran-
dom outcome ω). The simplest example of a functional is just a function of
X(T ): F (X) = V (X(T )). More complicated functionals are integrals: F (X) =∫ T

0 V (X(t))dt. extrema: F (X) = maxt≤T X(t), or stopping times such as

2In other contexts, people use C0 to indicate functions with “compact support” (whatever
that means) or functions that tend to zero as t → ∞, but not here.

3The American mathematician and MIT professor Norbert Wiener was equally brilliant
and inarticulate.
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F (X) = min
{
t such that

∫ t

0
X(s)dx ≤ 1

}
. Stochastic calculus provides tools

for computing the expected values of many such functionals, often through solu-
tions of partial differential equations. Computing expected values of functionals
is our main way to understand the behavior of Brownian motion (or any other
stochastic process).

1.10. Markov property: The independent increments property makes Brow-
nian motion a Markov process. Let Ft be the σ−algebra generated by the path
up to time t. This may be characterized as the σ−algebra generated by all the
random variables X(s) for s ≤ t, which is the smallest σ−algebra in which all the
functions X(s) are measurable. It also may be characterized as the σ−algebra
generated by events of the form A above (“Tehcnical aside”) with tn ≤ t (proof
ommitted). We also have the σ−algebra Gt generated by the present only. That
is, Gt is generated by the single random variable X(t); it is the smallest σ−
algebra in which X(t) is measurable. Finally, we let Ht denote the σ−algebra
that depends only on future values X(s) for s ≥ t. The Markov property states
that if F (X) is any functional measurable with respect to Ht (i.e. depending
only on the future of t), then E[F | Ft] = E[F | Gt].

Here is a quick sketch of the proof. If F (X) is a function of finitely many
values, X(tk), with tk ≥ t, then then E[F | Ft] = E[F | Gt] follows from the
independent increments property. It is possible (though tedious) to show that
any F measurable with respect to Ht may be approximated by a functional
depending on finitely many future times. This extends E[F | Ft] = E[F | Gt] to
all F measurable in Ht.
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1.11. Rough paths: The above picture shows 5 Brownian motion paths.
They are random and differ in gross features (some go up, others go down), but
the fine scale structure of the paths is the same. They are not smooth, or even
differentiable functions of t. If X(t) is a differentiable function of t, then for
small ∆t its increments are roughly proportional to ∆t:

∆X = X(t + ∆t) − X(t) ≈ dX

dt
∆t .

For Brownian motion, the expected value of the square of ∆X (the variance of
∆X) is proportional to ∆t. This suggests that typical values of ∆X will be on
the order of

√
∆t. In fact, an easy calculation gives

E[|∆X |] =

√
∆t

2π
.

This would be impossible if successive increments of Brownian motion were all
in the same direction (see “Total variation” below). Instead, Brownian motion
paths are constantly changing direction. They go nowhere (or not very far) fast.

1.12. Total variation: One quantitative sense of path roughness is the fact
that Brownian motion paths have infinite total variation. The total variation

of a function X(t) measures the total distance it moves, counting both ups and
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downs. For a differentiable function, this would be

TV(X) =

∫ T

0

∣∣∣∣
dX

dt

∣∣∣∣ dt . (5)

If X(t) has simple jump discontinuities, we add the sizes of the jumps to (5).
For general functions, the total variation is

TV(X) = sup

n−1∑

k=0

|X(tk+1) − X(tk)| , (6)

where the supremum as over all positive n and all sequences t0 = 0 < t1 < · · · <
tn ≤ T .

Suppose X(t) has finitely many local maxima or minima, such as t0 = local
max, t1 = local min, etc. Then taking these t values in (6) gives the exact total
variation (further subdivision does not increase the left side). This is one way
to relate the general definition (6) to the definition for differentiable functions
(5). The general definition (6) makes sense for function like Brownian motion
that have infinitely many local maxima and minima.

1.13. Almost surely: Let A ∈ F be a measurable event. We say A happens
almost surely if P (A) = 1. This allows us to establish properties of random ob-
jects by doing calculations (stochastic calculus). For example, we will show that
Brownian motions paths have infinite total variation almost surely by showing
that for any (small) ǫ > 0 and any (large) N ,

P (TV(X) < N) < ǫ . (7)

Let B ⊂ C0([0, t], R) be the set of paths with finite total variation. This is a
countable union

B =
⋃

N>0

{TV(X) < N} =
⋃

N>0

BN .

Since P (BN ) < ǫ) for any ǫ > 0, we must have P (BN ) = 0. Countable additivity
then implies that P (B) = 0, which means that P (TV = ∞) = 1.

There is a distinction between outcomes that do not exist and events that
never happen because they have probability zero. For example, if Z is a one
dimensional Gaussian random variable, the outcome Z = 0 does exist, but the
event {Z = 0} is impossible (never will be observed). This is what we mean
when we say “a Gaussian random variable never is zero”, or “every Brownian
motion path has invinite total variation”.

1.14. The TV of BM: The heart of the matter is the actual calculation
behind the inequality (7). We choose an n > 0 and define (not for the last time)
∆t = T/n and tk = k∆t. Let Y be the random variable

Y =

n−1∑

k=0

|X(tk+1) − X(tk)| .
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Remember that Y is one of the candidates we must use in the supremem (6) that
defines the total variation. If Y is large, then the total variation is at least as

large. Because E[|∆X |] =
√

2
π

√
∆t, we have E[Y ] =

√
2
π

√
T
√

n. A calculation

using the independent increments property shows that

var(Y ) =

(
1 − 2

π

)
T

for any n. Tchebychev’s inequality4 implies that

P

(
Y <

(√
2

π

√
n − k

√
1 − 2

π

)
√

T

)
≤ 1

k2
.

If we take very large n and medium large k, this inequality says that it is very
unlikely for Y (or total variation of X) to be much less than const

√
n. Our

inequality (7) follows from this whth a suitable choice of n and k.

1.15. Structure of BM paths: For any function X(t), we can define the
total variation on the interval [t1, t2] in an obvious way. The odometer of a car
records the distance travelled regardless of the direction. For X(t), the total
variation on the interval [0, t] plays a similar role. Clearly, X is monotone on
the interval [t1, t2] if and only if TV(X, t1, t2) = |X(t2) − X(t1)|. Otherwise,
X has at least one local min or max within [t1, t2]. Now, Brownian motion
paths have infinite total variation on any interval (the proof above implies this).
Therefore, a Brownian motion path has a local max or min within any interval.
This means that (like the rational numbers, for example) the set of local maxima
and minima is dense: There is a local max or min arbitrarily close to any given
number.

1.16. Dynamic trading: The infinite total variation of Brownian motion has
a consequence for dynamic trading strategies. Some of the simplest dynamic
trading strategies, Black-Scholes hedging, and Merton half stock/half cash trad-
ing, call for trades that are proportional to the change in the stock price. If the
stock price is a diffusion process and there are transaction costs proportional
to the size of the trade, then the total transaction costs will either be infinite
(in the idealized continuous trading limit) or very large (if we trade as often as
possible). It turns out that dynamic trading strategies that take trading costs
into account can approach the idealized zero cost strategies when trading costs
are small. Next term you will learn how this is done.

1.17. Quadratic variation: A more useful measure of roughness of Brownian
motion paths and other diffusion processes is quadratic variation. Using previous

4If E[Y ] = µ and var(Y ) = σ2, then P (|Y − µ| > kσ) < 1

k2
. The proof and more examples

are in any good basic probability book.
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notations: ∆t = T/n, tk = k∆t, the definition is5 (where n → ∞ as ∆t → 0
with t = n∆t fixed)

Q(X) = lim
∆t→0

Qn(X) = lim
∆t→0

n−1∑

k=0

(X(tk+1 − X(tk))
2

. (8)

If X is a differentiable function of t, then its quadratic variation is zero (Qn

is the sum of n terms each of order 1/n2). For Brownian motion, Q(T ) =
T (almost surely). Clearly E[Qn] = T for any n (independent increments,
Gaussian increments with variance ∆t). The independent increments property
also lets us evaluate var(Qn) = 3T 2/n (the sum of n terms each equal to 3∆t2 =
3T 2/n2). Thus, Qn must be increasingly close to T as n gets larger6

1.18. Trading volatility: The quadratic variation of a stock price (or a similar
quantity) is called it’s “realized volatility”. The fact that it is possible to buy
and sell realized volatility says that the (geometric) Brownian motion model
of stock price movement is not completely realistic. That model predicts that
realized volatility is a constant, which is nothing to bet on.

1.19. Brownian bridge construction: The Brownian bridge construction is a
heierarchical process that produces a Browniain motion path through a sequence
of refinements. At level k, the construction adds detail on time scale τk to the
path, with τk → 0 as k → ∞. It is useful both in understanding theoretical
properties of Brownian motion paths and for variance reduction in Monte Carlo
computations. It is based on the computations of Paragraph 1.6.

The largest scale structure of a Brownian motion path is determined by its
endpoint, X(T ). This a Gaussian with mean zero and variance T , so we take
X(T ) = TZ0, with Z ∼ N (0, 1) being a standard normal. On this, the zero-th
level, the approximate Brownian motion path simply connects the starting point
to the endpoint with a straight line: X0(t) = tZ0.

The time scale for level k will be τk = T/2k. Suppose the level k − 1 path,
Xk−1(t) has been constructed and is continuous and piecewise linear between
breakpoints tj,k−1 = jτk−1. We seek to define Xk(t) without changing these
values. Since tj,k−1 = t2j,k, that means Xk(t2j,k) = Xk−1(tj,k−1). We use the
formulas from paragrapn 1.6 to get values for the new points t2j+1,k, which are
midpoints of the level k − 1 intervals (tj,k−1, tj+1,k−1. Conditional on knowing
X(tj,k−1) and X((tj+1,k−1), X(t2j+1,k) is Gaussian with mean (X(tj,k−1) +
X((tj+1,k−1))/2 and variance τk/2. Therefore, we set

Xk(t2j+1,k) =
1

2
(X(tj,k−1) + X((tj+1,k−1)) +

√
τk/2Zjk ,

5It is possible, though not customary, to define TV(X) using evenly spaced points. In the
limit ∆t → 0, we would get the same answer for continuous paths or paths with TV(X) < ∞.
You don’t have to use uniformly spaced times in the definition of Q(X), but I think you get
a different answer if you let the times depend on X as they might in the definition of total
variation.

6Thes does not quite prove that (almost surely) Qn → T as n → ∞. We will come back
to this point in later lectures.
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where the Zjk are iid standard normals.

1.20. White noise: In stochastic calculus, Brownian motion is mainly used
as a way to make the concept of white noise rigorous. White noise is a mean
zero random function of t that is independent at different times. As for the
δ function of Dirac, is impossible for an honest function to do this exactly, so
white noise is a kind of generalized function. Formally, we say Z(t) is white
noise if E[Z(t)] = 0 for all t and

cov(Z(t), Z(s)) = E [Z(t)Z(s)] = δ(t − s) . (9)

The total noise in an interval (a, b) is

∫ b

a

Z(t)dt .

More generally, if f(t) is any function, we can define

Yf =

∫
f(t)Z(t)dt . (10)

We can estimate the variance of Yf using our usual trick:

var(Yf ) = E [YfYf ]

= E

[∫
f(t)Z(t)dt

∫
f(s)Z(s)ds

]

=

∫ ∫
f(t)f(s)E [Z(t)Z(s)] dtds

=

∫ ∫
f(t)f(s)δ(t − s)dtds

var(Yf ) =

∫
f(t)2dt . (11)

This formula expresses the fact that Yf is a sum of many independent con-
tributions f(t)Z(t)dt, so the variance of Yf is the sum of the variances of the
individual contributions. This will be more precise below.

1.21. Gaussian white noise: We usually suppose white noise is Gaussian.
Even if it were not, the quantitities derived from it would be. The integral (10)
expresses Yf as a sum of a large number of small contributions, the f(t)Y (t)dt
for different t values. The central limit theorem suggests that a sum of a large
number of very small independent contributions should be gaussian even if the
individual contributions are not. More generally, if we have functions f1, . . ., fn,
then the random variables Vj = Yfj

are jointly normal with covariance matrix

Cjk =

∫
fj(t)fk(t)dt . (12)
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1.22. White noise and Brownian motion: Brownian motion is the integral of
white noise:

X(t) =

∫ t

0

Z(t′)dt′ . (13)

This implies that X(t) is Gaussian. It also gives the independent increments

property. The increments are given by X(t2) − X(t1) =
∫ t2

t1
Z(t)dt. This is an

expression of the form (10) where f is the indicator function f(t) = 1(t1,t2). It
follows from (12) that increments corresponding to disjoint intervals have zero
covariance and hence (being Gaussian) are independent. This is a complicated
way of saying that Z values from disjoint intervals are independent. We can use
this to understand certain integrals involving Brownian motion. For example

∫ T

0

X(t)dt =

∫ T

0

∫ t

0

Z(s)dsdt =

∫ T

0

(∫ T

s

dt

)
Z(s)ds =

∫ T

0

(T − s)Z(s)ds .

1.23. Why is it called white? The Fourier transform of a function of time is
defined in the same way as the characteristic function:

ĝ(ξ) =

∫ ∞

−∞
e−iξtg(t)dt . (14)

The inverse Fourier transform formula is the same:

g(t) =
1

2π

∫ ∞

−∞
eiξtĝ(ξ)dξ . (15)

This has the interpretation of representing g as a sum of pure waves eiξt =
cos(ξt) + i sin(iξt) with frequency ξ. The weight of frequency ξ is ĝ(ξ)/2π. It is
a continuous sum (i.e. an integral) because all values of ξ are allowed.

The Fourier transform of white noise is

Ẑ(ξ) =

∫ ∞

−∞
e−iξtZ(t)dt .

This is supposed to be a family of Gaussian random variables, so we characterize
them by their mean (E[Ẑ(ξ)] = 0), and covariance (using (12) and Dirac’s
formula):

E
[
Ẑ(ξ)Ẑ(η)

]
=

∫ ∞

−∞
eiξte−iηtdt

= 2πδ(t − s) .

In other words, the Fourier transform of white noise also (but for a factor of 2π)
is white noise, as a function of ξ.

Newton discovered that white light is a combination of light of all colors.
Light represents a vibration, with vibrations of a single frequency being colors.
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Thus, white light is a combination of vibrations of all frequencies.7 If A(ξ) (an
amplitude function, also called spectral density) is given, we can define colored

noise) by

W (t) =
1

2π

∫ ∞

−∞
A(ξ)eiξtẐ(ξ)dξ .

The reader can check that this Gaussian random function satisfies E[W (t)] = 0
and

R(s) = E [W (t)W (t + s)] =
1

2π

∫ ∞

−∞
eiξs |A(ξ)|2 dξ . (16)

Such a random function is stationary in that its statistical properties are inde-
pendent of t. The correlation between W (t) and W (t + s) depends only on the
offset, s, but not on the time t.

The function W (t) will be an honest function, as opposed to a generalized
function, if the integral on the right of (16) is absolutely convergent. In the case
of white noise, A(ξ) ≡ 1 and the right side of (16) is the δ function, as it should
be.

1.24. Fourier sine and cosine transforms: The Fourier transform of a real
valued function usually is not real valued. The Fourier sine transform and
Fourier cosine transform are a version of the Fourier transform that stays in
the real domain. They are based on the identities

eiθ = cos(θ) + i sin(θ) , cos(−θ) = cos(θ) , sin(−θ) = sin(θ) , (17)

and consequences

cos(θ) =
eiθ + e−iθ

2
, sin(θ) =

eiθ − e−iθ

2i
. (18)

The sine and cosine transforms are, using the probabilists’ conventions with
factors of π,

b(ξ) =

∫ ∞

−∞
sin(ξt)f(t)dt , (19)

and

a(ξ) =

∫ ∞

−∞
cos(ξt)f(t)dt . (20)

If f(t) is real, they are related to the ordinary (complex exponential) Fourier
transform through (see (17)

f̂(ξ) =

∫ ∞

−∞
eiξtf(t)dt

=

∫ ∞

−∞

(
cos(ξt) − i sin(ξt)

)
f(t)dt

f̂(ξ) = a(ξ) − ib(ξ) .

7Actually, only a certain range of frequencies are called “light”. Others are infra-red,
microwave, ultra violet, etc.
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That is, the cosine and sine transforms are the real part and (negative of the)
imaginary part of the complex exponential transform. The symmetry properties
(17) of sine and cosine imply that a(−ξ) = a(ξ) and b(−ξ) = −b(ξ). Therefore,
we need only calculate them for positive ξ. In this way, the Fourier transform
identifies a real function defined on the whole line, −∞ < t < ∞, with two
real functions, a(ξ) and b(ξ), defined on a half line 0 ≤ ξ < ∞. Note also the
identity (here z is the complex conjugate of z)

f̂(ξ) = a(ξ) − ib(ξ) = a(ξ) + ib(ξ) = a(−ξ) − ib(−ξ) = f̂(−ξ) ,

that holds for the Fourier transform of a real function.

1.25. Inverting the sine and cosine transforms: We seek a version of the
inversion formula (15) that applies to the sine and cosine transform of a real
function. One way to do this is

f(t) =
1

2π

∫ ∞

−∞
eiξtf̂(ξ) dξ

=
1

2π

∫ ∞

−∞

(
cos(ξt) + i sin(ξt)

)(
a(ξ) − ib(ξt)

)
dξ .

Since the left side is real, the integral on the right is equal to its real part, so

f(t) =
1

2π

∫ ∞

−∞

(
cos(ξt)a(ξ) + sin(ξt)b(ξ)

)
dξ .

We know that cos(−ξt) = cos(ξt) and a(−ξ) = a(ξ), so

∫ ∞

−∞
cos(ξt)a(ξ) dξ = 2

∫ ∞

0

cos(ξt)a(ξ) dξ .

The sine term is the same, except that both factors change sign. the result is

f(t) =
1

π

∫ ∞

0

(
cos(ξt)a(ξ) + sin(ξt)b(ξ)

)
dξ . (21)

This corrects a slight misstatement regarding the Fourier transform of white

noise. If F (t) is real then F̂ (ξ) = F̂ (−ξ). This implies that F̂ (ξ) and F̂ (−ξ) are
not independent. What is true is that A(ξ) and B(ξ) (the cosine and sine trans-
forms of F ) are independent, as long as ξ > 0, both independent of each other
of themselves for different ξ values. That is, A(ξ) and B(ξ) are independent
white noise functions defined for ξ > 0.

1.26. Theory of white noise: The Ito calculus is one way to give a complete
mathematical definition to white noise. A more direct way is to express white
noise as a limit of a sequence of approximations. Choose a small but positive
∆t, define times tk = k∆t, and intervals Ik = [k∆t, (k + 1)∆t]. An approximate
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white noise, Z∆t(t), will have constant (but random) values in each interval Ik.
Informally, we want this to be the average value of Z(t) over Ik:

Z∆t(t) =
1

∆t

∫

Kk

Z(t)dt , for t ∈ Ik .

Our general rule ∫ b

a

Z(t)dt ∼ N (0, b − a) ,

with disjoint intervals being independent. This means that if Uk ∼ N (0, 1) are
iid standard normals, we can define our approximate white noise by

Z∆t(t) =
1√
∆t

Uk , for t ∈ Ik . (22)

We then can define approximate the integrals (10) by

Yf,∆t = ∆t

∞∑

−∞
f(tk)Z∆t(tk) =

√
∆t

∞∑

−∞
f(tk)Uk .

The reader can check, for example, that for suitable functions f and g,

lim
∆t→0

cov(Yf,∆t, Yg,∆t) =

∫
f(t)g(t)dt ,

as it should be.
We get some idea of the difficulty in defining Z(t) as an honest function by

calculating (Check that the ∆t factors cancel, use the law of large numbers.)

∫ 1

0

Z∆t(t)
2dt ≈

∑

tk∈[0,1]

U2
k ≈ 1

∆t
.

More generally, this shows (very informally) that
∫ b

a
Z(t)2dt = ∞ whenever a <

b. Whatever Z(t) might be, Z(t)2 = ∞, at least whenever you try integrating
it.

1.27. Continuous time stochastic process: The general abstract definition of
a continuous time stochastic process is just a probability space, Ω, and, for each
t > 0, a σ−algebra Ft. These algebras should form a filtration (corresponding
to increase of information): Ft1 ⊆ Ft2 if t1 ≤ t2. There should also be a family
of random variables Yt(ω), with Yt measurable in Ft (i.e. having a value known
at time t). This explains why probabilists often write Xt instead of X(t) for
Brownian motion and other diffusion processes. For each t, we think of Xt as a
function of ω with t simply being a parameter. Our choice of probability space
Ω = C0([0, T ], R) implies that for each ω, Xt(ω) is a continuous function of t.
(Actually, for simple Brownian motion, the path X plays the role of the abstract
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outcome ω, though we never write Xt(X).) Other stochastic processes, such as
the Poisson jump process, do not have continuous sample paths.

1.28. Continuous time martingales: A stochastic process Ft (with Ω and the
Ft) is a martingale if E[Fs | Ft] = Ft for s > t. Brownian motion forms the first
example of a continuous time martingale. Another famous martingale related to
Brownian motion is Ft = X2

t − t (the reader should check this). As in discrete
time, any random variable, Y , defines a continuous time martingale through
conditional expectations: Yt = E[Y | Ft]. The Ito calculus is based on the idea
that a stochastic integral with respect to X should produce a martingale.

2 Brownian motion and the heat equation

2.1. Introduction: Forward and backward equations are tools for calculating
probabilities and expected values related to Brownian motion, as they are for
Markov chains and stochastic processes more generally. The probability density
of X(t) satisfies a forward equation. The conditional expectations E[V | Ft]
satisfy backward equations for a variety of functionals V . For Brownian motion,
the forward and backward equations are partial differential equations, either the
heat equation or a close relative. We will see that the theory of partial differential
equations of diffusion type (the heat equation being the a prime example) and
the theory of diffusion processes (Brownian motion being a prime example) each
draw from the other.

2.2. Forward equation for the probability density: If X(t) is a standard
Brownian motion with X(0) = 0, then X(t) ∼ N (0, t), so its probability density
is (see (1))

u(x, t) = G(0, x, t) =
1√
2πt

ex2/2t .

Directly calculating partial derivatives, we can verify that

∂tG =
1

2
∂2

xG . (23)

We also could consider a Brownian motion with a more general initial density
X(0) ∼ u0(x). Then X(t) is the sum of independent random variables X(0)
and an N (0, t). Therefore, the probability density for X(t) is

u(x, t) =

∫ ∞

y=−∞
G(y, x, t)u0(y)dy =

∫ ∞

y=−∞
G(0, x − y, t)u0(y)dy . (24)

Again, direct calculation (differentiating (24), x and t derivatives land on G)
shows that u satisfies

∂tu =
1

2
∂2

xu . (25)
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This is the heat equation, also called diffusion equation. The equation is used in
two ways. First, we can compute probabilities by solving the partial differential
equation. Second, we can use known probability densities as solutions of the
partial differential equation.

2.3. Heat equation via Taylor series: The above is not so much a derivation
of the heat equation as a verification. We are told that u(x, t) (the probability
density of Xt) satisfies the heat equation and we verify that fact. Here is a
method for deriving a forward equation without knowing it in advance. We
assume that u(x, t) is smooth enough as a function of x and t that we may expand
it to to second order in Taylor series, do the expansion, then take the conditional
expectation of the terms. Variations of this idea lead to the backward equations
and to major parts of the Ito calculus.

Let us fix two times separated by a small ∆t: t′ = t + ∆t. The rules of
conditional probability allows us to compute the density of X = X(t′) in terms
of the density of Y = X(t) and the transition probability density (1):

u(x, t + ∆t) =

∫ ∞

−∞
G(y, x, ∆t)u(y, t)dy . (26)

The main idea is that for small ∆t, X(t + ∆t) will be close to X(t). This is
expressed in G being small unless y is close to x, which is evident in (1). In
the integral, x is a constant and y is the variable of integration. If we would
approximate u(y, t) by u(x, t), the value of the integral just would be u(x, t).
This would give the true but not very useful approximation u(x, t + ∆t) ≈
u(x, t) for small ∆t. Adding the next Taylor series term (writing ux for ∂xu):
u(y, t) ≈ u(x, t)+ux(x, t)(y−x), the integral does not change the result because∫

G(y, x, ∆t)(y − x)dy = 0. Adding the next term:

u(y, t) ≈ u(x, t) + ux(x, t)(y − x) +
1

2
uxx(x, t)(y − x)2 ,

gives (because E[(Y − X)2] = ∆t)

u(x, t + ∆t) ≈ u(x, t) +
1

2
uxx(x, t)∆t .

To derive a partial differential equation, we expand the left side as u(x, t+∆t) =
u(x, t) + ut(x, t)∆t + O(∆t2). On the right, we use

∫
G(y, x, ∆t) |y − x|3 dy = O(∆t3/2) .

Altogether, this gives

u(x, t) + ut(x, t)∆t = u(x, t) + uxx(x, t)∆t + O(∆t3/2) .

If we cancel the common u(x, t) then cancel the common factor ∆t and let
∆t → 0, we get the desired heat equation (25).
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2.4. The initial value problem: The heat equation (25) is the Brownian
motion anologue of the forward equation for Markov chains. If we know the time
0 density u(x, 0) = u0(x) and the evolution equation (25), the values of u(x, t)
are completely and uniquely determined (ignoring mathematical technicalities
that would be unlikely to trouble a practical person). The task of finding u(x, t)
for t > 0 from u0(x) and (25) is called the “initial value problem”, with u0(x)
being the “initial value” (or “values”??). This initial value problem is “well
posed”, which means that the solution, u(x, t), exists and depends continuously
on the initial data, u0. If you want a proof that the solution exists, just use the
integral formula for the solution (24). Given u0, the integral (24) exists, satisfies
the heat equation, and is a continuous function of u0. The proof that u is unique
is more technical, partly because it rests on more technical assumptions.

2.5. Ill posed problems: In some situations, the problem of finding a function
u from a partial differential equation and other data may be “ill posed”, useless
for practical purposes. A problem is ill posed if it is not well posed. This means
either that the solution does not exist, or that it does not depend continuously
on the data, or that it is not unique. For example, if I try to find u(x, t) for
positive t knowing only u0(x) for x > 0, I must fail. A mathematician would say
that the solution, while it exists, is not unique, there being many different ways
to give u0(x) for x > 0, each leading to a different u. A more subtle situation
arises, for example, if we give u(x, T ) for all x and wish to determine u(x, t)
for 0 ≤ t < T . For example, if u(x, T ) = 1[0,1](x), there is no solution (trust
me). Even if there is a solution, for example given by (24), is does not depend
continuously on the values of u(x, T ) for T > t (trust me).

The heat equation (25) relates values of u at one time to values at another
time. However, it is “well posed” only for determining u at future times from u
at earlier times. This “forward equation” is well posed only for moving forward
in time.

2.6. Conditional expectations: We saw already for Markov chains that
certain conditional expected values can be calculated by working backwards in
time with the backward equation. The Brownian motion version of this uses
the conditional expectation

f(x, t) = E[V (XT ) | Xt = x] . (27)

One “modern” formulation of this defines Ft = E[V (Xt) | Ft]. The Markov
property implies that Ft is measurable in Gt, which makes it a function of
Xt. We write this as Ft = f(Xt, t). Of course, these definitions mean the
same thing and yield the same f . The definition is also sometimes written as
f(x, t) = Ex,t[V (XT )]. In general if we have a parametrized family of probability
measures, Pα, we write the expected value with respect to Pα as Eα[·]. Here,
the probability measure Px,t is the Wiener measure describing Brownian motion
paths that start from x at time t, which is defined by the densities of increments
for times larger than t as before.
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2.7. Backward equation by direct verification: Given that Xt = x, the
conditional density for XT is same transition density (1). The expectation (27)
is given by the integral f(x, t) as an integral, we get

f(x, t) =

∫ ∞

−∞
G(x, y, T − t)V (y)dy . (28)

We can verify by explicit differentiation (x and t derivatives act on G) that

∂tf +
1

2
∂2

xf = 0 . (29)

Note that the sign of ∂t here is not what it was in (25), which is because we are
calculating ∂tG(T − t) rather than ∂tG(t). This (29) is the backward equation.

2.8. Backward equation by Taylor series: As with the forward equation (25),
we can find the backward equation by Taylor series expansions. We start by
choosing a small ∆t and expressing f(x, t) in terms of8 f(·, t + ∆t). As before,
define Ft = E[V (XT ) | Ft] = f(Xt, t). Since Ft ⊂ Ft+∆t, the tower property
implies that Ft = E[Ft+∆t | Ft].

f(x, t) = Ex,t[f(Xt+∆t)]

=

∫ ∞

y=−∞
f(y, t + ∆t)G(x, y, ∆t)dy . (30)

As before, we expand f(y, t+∆t) about x, t dropping terms that contribute less
than O(∆t):

f(y, t + ∆t)

= f(x, t) + fx(x, t)(y − x) +
1

2
fxx(x, t)(y − x)2 + ft(x, t)∆t

+O(|y − x|3) + O(∆t2) .

Substituting this into (30) and integrating each term leads to

f(x, t) = f(x, t) + 0 +
1

2
fxx(x, t)∆t + ft(x, t)∆t + O(∆t3/2) + O(∆t2) .

A bit of algebra and ∆t → 0 then gives (29).
For future reference, we pause to note the differences between this derivation

of (29) and the related derivation of (25). Here, we integrated G with respect
to its second argument, while earlier we integrated with respect to the first
argument. This does not matter for the special case of Brownian motion and
the heat equation because G(x, y, t) = G(y, x, t). When we apply this reasoning
to other diffusion processes, G(x, y, t) will be a probability density as a function

8The notation f(·, t+∆t) is to avoid writing f(x, t+∆t) which might imply that the value
f(x, t) depends only on f at time t + ∆t for the same x value. Instead, it depends on all the
values f(y, t + ∆t).
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of y for every x, but it need not be a probability density as a function of x for
given y. This is an anologue of the fact in Markov chains that the transition
matrix P acts from the left on column vectors f (summing Pjk over k) but from
the right on row vectors u (summing Pjk over j). For each j,

∑
k Pjk = 1 but

the column sums
∑

j Pjk may not equal one. Of course, the sign of the ∂t term
is different in the two cases because we did the t Taylor series on the right side
of (30) but on the left side of (26).

2.9. The final value problem: The final values f(x, T ) = V (x), together with
the backward evolution equation (29) allow us to determine the values f(·, t)
for t < T . The definition (27) makes this obvious. This means that the final

value problem for the backward heat equation is a well posed problem.
On the other hand, the initial value problem for the backward heat equation

is not a well posed problem. If we have a f(x, 0) and we want a V (x) that leads
to it, we are probably out of luck.

2.10. Duality: As for Markov chains, we can express the expected value of
V (XT ) in terms of the probability density at any earlier time t ≤ T

E[V (XT )] =

∫
u(x, t)f(x, t)dx .

This again implies that the right side is independent of t, which in turn allows
us to derive the forward equation (25) from the backward equation (29) or
conversely. For example, differentiating and using (29) gives

0 =
d

dt

=

∫
ut(x, t)f(x, t)dx +

∫
u(x, t)ft(x, t)dx

=

∫
ut(x, t)f(x, t)dx −

∫
u(x, t)1

2fxx(x, t)dx .

To derive an equation involving only u derivatives, we want to integrate the last
integral by parts to move the x derivatives from f to u. In this formal derivation,
we will assume that the probability density u(x, t) decays to zero fast enough as
|x| → ∞ that we can neglect possible boundary terms at x = ±∞. This gives

∫ (
ut(x, t) − 1

2uxx(x, t)
)
f(x, t)dx = 0 .

If this relation holds for a sufficiently rich family of functions f , we can only
conclude that ut − 1

2uxx is identically zero, which is the forward equation (25).

2.11. The smoothing property, regularity: Solutions of the forward or back-
ward heat equation become smooth functions of x and t even if the initial data
(for the forward equation) or final data (for the backward equation) are not
smooth. For u, this is clear from the integral formula (24). If we differentiate
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with respect to x, this derivative passes under the integral and onto the G fac-
tor. This applies also to x or t derivatives of any order, since the corresponding
derivatives of G are still smooth integrable functions of x. The same can be said
for f using (28); as long as t < T , any derivatives of f with respect to x and/or t
are bounded. A function that has all partial derivatives of any order bounded is
called “smooth”. (Warning, this term is not used consistently. Some people say
“smoooth” to mean, for example, merely having derivatives up to second order
bounded.) Solutions of more general forward and backward equations often,
but not always, have the smoothing property.

2.12. Rate of smoothing: Suppose the payout (and final value) function,
V (x), is a discontinuous function such as V (x) = 1x<0(x) (a “digital” option in
finance). The solution to the backward equation can be expressed in terms of
the cumulative normal (with Z ∼ N (0, 1))

N(x) = P (Z < x) =
1√
2π

∫ x

z=−∞
e−z2/2dz .

Then we have

f(x, t) =

∫ 0

y=−∞
G(x, y, T − t)dy

=
1√

2π(T − t)

∫ 0

y=−∞
e−(x−y)2/2(t−t)dy

f(x, t) = N(x/
√

T − t) . (31)

From this it is clear that f is differentiable when t < T , but the first x derivative
is as large as 1/

√
T − t, the second as large as 1/(T − t), etc. All derivatives

blow up as t → T with higher derivatives blowing up faster. This can make
numerical solution of the backward equation difficult and inaccurate when the
final data V (x) is not smooth.

The formula (31) can be derived without integration. One way is to note that
f(x, t) = P (XT < 0 | Xt = x) and XT ∼ x+

√
T − tZ, (Gaussian increments) so

that XT < 0 is the same as Z < x/
√

T − t. Even without the normal probability,
a physicist would tell you that ∆X ∼

√
∆t, so the hitting probability starting

from x at time t has to be some function of x/
√

T − t.

2.13. Diffusion: If you put a drop of ink into a glass of still water, you
will see the ink slowly diffuse through the water. This is modelled as a vast
number of tiny ink particles each preforming an independent Brownian motion
in the water. Let u(x, t) represent the density of particles about x at time t
(say, particles per cubic millemeter). This u satisfies the heat equation but not
the requirement that

∫
u(x, t)dx = 1. If ink has been diffusing through water

for some time, there will be dark regions with a high density of particles (large
u) and lighter regions with smaller u. In the absence of boundaries (sides of the
class and the top of the water), the ink distribution would be Gaussian.
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2.14. Heat: Heat also can diffuse through a medium, as happens when
we put a thick metal pan over a flame and wait for the other side to heat
up. We can think of u(x, t) as representing the temperature in a metal at
location x at time t. This helps us interpret solutions of the heat equation
(25) when u is not necessarily positive. In particular, it helps us imagine the
cancellation that can occur when regions of positive and negative u are close to
each other. Heat flows from the high temperature regions to low or negative
temperature regions in a way that makes the temperature distribution a more
uniform. A physical argument that heat (temperature) flowing through a metal
should satisfy the heat equation was given by the French mathematical phycisist,
friend of Napoleon, and founder of Ecole Polytechnique, Joseph Fourier.

2.15. Hitting times: A stopping time, τ , is any time that depends on the
Brownian motion path X so that the event τ ≤ t is measurable with respect to
Ft. This is the same as saying that for each t there is some process that has as
input the values Xs for 0 ≤ s ≤ t and as output a decision τ ≤ t or τ > t. One
kind of stopping time is a hitting time:

τa = min (t | Xt = a) .

More generally (particularly for Brownian motion in more than one dimension)
if A is a closed set, we may consider τA = min(t | Xt ∈ A). It is useful to define
a Brownian motion that stops at time τ : X̃t = Xt if t ≤ τ , X̃t = Xτ if t ≥ τ .

2.16. Probabilities for stopped Brownian motion: Suppose Xt is Brownian
motion starting at X0 = 1 and X̃ is the Brownian motion stopped at time τ0,
the first time Xt = 0. The probability measure, Pt, for X̃t may be written
as the sum of two terms, Pt = P s

t + P ac
t . (Since X̃t is a single number, the

probability space is Ω = R, and the σ−algebra is the Borel algebra.) The
“singular” part, P s

t , corresponds to the paths that have been stopped. If p(t) is
the probability that τ ≤ t, then P s

t = p(t)δ(x), which means that for any Borel
set, A ⊆ R, P s

t (A) = p(t) if 0 ∈ A and P s
t (A) = 0 if 0 /∈ A. This δ is called

the “delta function” or “delta mass”; it puts weight one on the point zero and
no weight anywhere else. Probabilists sometimes write δx0

for the measure that
puts weight one on the point x0. Phycisists write δx0

(x) = ‘delta(x = x0). The
“absolutely continuous” part, P ac

t , is given by a density, u(x, t). This means
that P ac

t (A) =
∫

A
u(x, t)dx. Because

∫
R

u(x, t)dx = 1− p(t) < 1, u, while being
a density, is not a probability density.

This decomposition of a measure (P ) as a sum of a singular part and ab-
solutely continuous part is a special case of the Radon Nikodym theorem. We
will see the same idea in other contexts later.

2.17. Forward equation for u: The density for the absolutely continuous part,
u(x, t), is the density for paths that have not touched X = a. In the diffusion
interpretation, think of a tiny ink particle diffusing as before but being absorbed
if it ever touches a. It is natural to expect that when x 6= a, the density satisfies
the heat equation (25). u “knows about” the boundary condition because of
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the “boundary condition” u(a, t) = 0. This says that the density of particles
approaches zero near the absorbing boundary. By the end of the course, we
will have several ways to prove this. For now, think of a diffusing particle, a
Brownian motion path, as being hyperactive; it moves so fast that it has already
visited a neighborhood of its current location. In particluar, if Xt is close to a,
then very likely Xs = a for some s < t. Only a small minority of the particles
at x near a, with small density u(x, t) → 0 as x → a have not touched a.

2.18. Probability flux: Suppose a Brownian motion starts at a random point
X0 > 0 with probability density u0(x) and we take the absorbing boundary
at a = 0. Clearly, u(x, t) = 0 for x < 0 because a particle cannot cross from
positive to negative without crossing zero, the Brownian motion paths being
continuous. The probability of not being absorbed before time t is given by

1 − p(t) =

∫

x>0

u(x, t)dx . (32)

The rate of absorbtion of particles, the rate of decrease of probabiltiy, may be
calculated by using the heat equation and the boundary condition. Differenti-
ating (32) with respect to t and using the heat equation for the right side then
integrating gives

−ṗ(t) =

∫

x>0

∂tu(x, t)dx

=

∫

x>0

1

2
∂2

xu(x, t)dx

ṗ(t) =
1

2
∂xu(0, t) . (33)

Note that both sides of (33) are positive. The left side because P (τ ≤ t) is an
increasing function of t, the right side because u(0, t) = 0 and u(x, t) > 0 for
x > 0. The identity (33) leads us to interpret the left side as the probability
“flux” (or “density flux if we are thinking of diffusing particles). The rate
at which probability flows (or particles flow) across a fixed point (x = 0) is
proportional to the derivative (the gradient) at that point. In the heat flow
interpretation this says that the rate of heat flow across a point is proportional
to the temperature gradient. This natural idea is called Fick’s law (or possibly
“Fourier’s law”).

2.19. Images and Reflections: We want a function u(x, t) that satisfies the
heat equation when x > 0, the boundary condition u(0, t) = 0, and goes to δx0

as t ↓ 0. The “method of images” is a trick for doing this. We think of δx0
as

a unit “charge” (in the electrical, not financial sense) at x0 and g(x − x0, t) =
1√
2π

e−(x−x0)
2/2t as the response to this charge, if there is no absorbing boundary.

For example, think of puting a unit drop of ink at x0 and watching it spread
along the x axis in a “bell shaped” (i.e. gaussian) density distribution. Now
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think of adding a negative “image charge” at −x0 so that u0(x) = δx0
− δ−x0

and correspondingly

u(x, t) =
1√
2πt

(
e−(x−x0)

2/2t − e−(x+x0)
2/2t
)

. (34)

This function satisfies the heat equation everywhere, and in particular for x > 0.
It also satisfies the boundary condition u(0, t) = 0. Also, it has the same initial
data as g, as long as x > 0. Therefore, as long as x > 0, the u given by (34)
represents the density of unabsorbed particles in a Brownian motion with ab-
sorption at x = 0. You might want to consider the image charge contribution
in (34), 1√

2π
e−(x−x0)

2/2t, as “red ink” (the ink that represents negative quanti-

ties) that also diffuses along the x axis. To get the total density, we subtract
the red ink density from the black ink density. For x = 0, the red and black
densities are the same because the distance to the sources at ±x0 are the same.
When x > 0 the black density is higher so we get a positive u. We can think of
the image point, −x0, as the reflection of the original source point through the
barrier x = 0.

2.20. The reflection principle: The explicit formula (34) allows us to evaluate
p(t), the probability of touching x = 0 by time t starting at X0 = x0. This is

p(t) = 1 −
∫

x>0

u(x, t)dx =

∫

x>0

1√
2πt

(
e−(x−x0)

2/2t − e−(x+x0)
2/2t
)

dx .

Because
∫∞
−∞

1√
2πt

e−(x−x0)/2tdx = 1, we may write

p(t) =

∫ 0

−∞

1√
2πt

e−(x−x0)
2/2tdx +

∫ ∞

0

1√
2πt

e−(x+x0)
2/2tdx .

Of course, the two terms on the right are the same! Therefore

p(t) = 2

∫ 0

−∞

1√
2πt

e−(x−x0)
2/2tdx .

This formula is a particular case the Kolmogorov reflection principle. It says
that the probability that Xs < 0 for some s ≤ t is (the left side) is exactly
twice the probability that Xt < 0 (the integral on the right). Clearly some of
the particles that cross to the negative side at times s < t will cross back, while
others will not. This formula says that exactly half the particles that touch
for some s ≤ t have Xt > 0. Kolmogorov gave a proof of this based on the
Markov property and the symmetry of Brownian motion. Since Xτ = 0 and
the increments of X for s > τ are independent of the increments for s < τ , and
since the increments are symmetric Gaussian random variables, they have the
same chance to be positive Xt > 0 as negative Xt < 0.

2.21. Fourier transform algebra: The Fourier transform helps us find solu-
tions of the heat equation and understand some qualitative properties of prob-
lems we cannot solve explicitly. Both applications are possible because of the
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of the relationship between the Fourier transform of ∂xf(x) and the transform
of f

∂̂xf(ξ) = iξf̂(ξ) . (35)

The Fourier transform turns the analytical process of differentiation into the
algebraic process of multiplication by ξ. You can verify this by integration by
parts in the formula for the Fourier transform of ∂xf . The Fourier inversion
formula gives a symmetrical relation, which we verify in a different way. From
∂ξe

iξx = ixeiξx we have xeiξx = −i∂ξe
iξx. Therefore

xf(x) =
1

2π

∫ ∞

−∞
xeiξxf̂(ξ) dξ

=
−i

2π

∫ ∞

−∞
∂ξe

iξxf̂(ξ) dξ

=
1

2π

∫ ∞

−∞
eiξx

(
i∂ξf̂(ξ)

)
dξ .

This is a Fourier representation of the function xf(x), which implies that

̂xf(x) = i∂ξf̂(ξ) . (36)

2.22. Fourier transform and the Green’s function: The Green’s function, or
fundamental solution to the heat equation is the solution of the heat equation
with initial data u(x, 0) = δ(x). One way to find this, if we did not already
know it, would be to find a formula for

û(ξ, t) =

∫ ∞

−∞
e−iξxu(x, t)dx .

Note that u is a function of two variables but we take the transform with respect
to x only. If u(x, t) satisfies the forward heat equation, we can calculate, using
(35) twice,

∂tû(ξ, t) =

∫ ∞

−∞
e−iξx∂tu(x, t)dx

=
1

2

∫ ∞

−∞
e−iξx∂2

xu(x, t)dx

∂tû(ξ, t) =
−ξ2

2
û(ξ, t) .

The last line is an ordinary differential equation for each value of ξ. The solution
is

û(ξ, t) = e−ξ2t/2û(ξ, 0) .

We can calculate

û(ξ, 0) =

∫ ∞

−∞
e−iξxδ(x)dx = 1
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for all ξ. This implies that

û(ξ, t) = e−ξ2t/2 . (37)

We have seen that Fourier integrals of functions with quadratic exponents
(Gaussians) are again functions with quadratic exponents. Working out this
one gives

u(x, t) =
1

2π

∫ ∞

−∞
eiξxe−ξ2t/2 dξ =

1√
2πt

e−x2/2t ,

which we recognize as the Gaussian transition density for Brownian motion.

2.23. Fourier transforms of smooth functions: One of the many applications
of the differentiation formula (35) is a way to show certain functions are smooth.

For example, if f̂(ξ) → 0 as ξ → ∞ fast enough so that the integral is finite,
then, since

∣∣eiξx
∣∣ = 1 for all ξ,

|f(x)| ≤ 1

2π

∣∣∣∣
∫ ∞

−∞
eiξxf̂(ξ) dξ

∣∣∣∣ ≤
1

2π

∫ ∞

−∞

∣∣∣f̂(ξ)
∣∣∣ dξ ,

so f(x) is cannot have too large values. Similarly, (35) implies that

|∂xf(x)| ≤ 1

2π

∫ ∞

−∞

∣∣∣ξf̂(ξ)
∣∣∣ dξ ,

so the derivative of f cannot have too large values if ξf̂(ξ) is integrable. Contin-

uing in this way, we see that ∂n
x f(x) is bounded if the nth moment of f̂ is finite.

The conclusion is that f is very smooth if f̂(ξ) is a rapidly decaying function of
ξ.

This gives a different way to see the smoothing property of the heat equation.
If u(x, t) is the solution of the heat equation with initial data u0(x), then

û(ξ, t) = e−ξ2t/2û0(ξ) .

The exponential factor on the right makes the Fourier transform at time t a
rapidly decaying function of ξ even if the initial condition is not smooth.

2.24. Backward heat equation: The same calculation shows that

û0(ξ) = e+ξ2t/2û0(ξ, t) .

This shows that it is very hard to compute u0 from u(·, t) with t > 0. The

ξ Fourier mode is multiplied by a factor of e+ξ2t/2, which is an exponentially
growing function of ξ.

We can understand this in another way. The smoothing property of the heat
equation solution implies that the solution process discards information about
the initial data. Once this information is discarded, it is lost. Technically, the
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Fourier amplitude û0(ξ) is vastly reduced by multiplication by e−ξ2t/2. To undo
this, you have to multiply by a huge factor. This makes running the forward
equation backwards impractical, since any small amount of noise in the high
modes would be amplified to dominate whatever signal was there.

Note that solving the backward equation is not the same thing as running
the forward equation backwards.
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