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1 Path space measures and change of measure

1.1. Introduction: We turn to a closer study of the probability measures
on path space that represent solutions of stochastic differential equations. We
do not have exact formulas for the probability densities, but there are approxi-
mate formulas that generalize the ones we used to derive the Feynman integral
(not the Feynman Kac formula). In particular, these allow us to compare the
measures for different SDEs so that we may use solutions of one to represent ex-
pected values of another. This is the Cameron Martin Girsanov formula. These
changes of measure have many applications, including importance sampling in
Monte Carlo and change of measure in finance.

1.2. Importance sampling: Importance sampling is a technique that can
make Monte Carlo computations more accurate. In the simplest version, we
have a random variable, X , with probability density u(x). We want to estimate
A = Eu[φ(X)]. Here and below, we write EP [·] to represent expecation using
the P measure. To estimate A, we generate N (a large number) independent
samples from the population u. That is, we generate random variables Xk for
k = 1, . . . , N that are independent and have probability density u. Then we
estimate A using

A ≈ Âu =
1

N

N∑

k=1

φ(Xk) . (1)

The estimate is unbiased because the bias, A − Eu[Âu], is zero. The error is

determined by the variance var(Âu) = 1
N varu(φ(X)).

Let v(x) be another probability density so that v(x) 6= 0 for all x with
u(x) 6= 0. Then clearly

A =

∫
φ(x)u(x)dx =

∫
φ(x)

u(x)

v(x)
v(x)dx .

We express this as

A = Eu[φ(X)] = Ev[φ(X)L(X)] , where L(x) =
u(x)

v(x)
. (2)

The ratio L(x) is called the score function in Monte Carlo, the likelihood ratio

in statistics, and the Radon Nikodym derivative by mathematicians. We get a
different unbiased estimate of A by generating N independent samples of v and
taking

A ≈ Âv =
1

N

N∑

k=1

φ(Xk)L(Xk) . (3)
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The accuracy of (3) is determined by

varv(φ(X)L(X)) = Ev[(φ(X)L(X) − A)2] =

∫
(φ(x)L(x) − A)2v(x)dx .

The goal is to improve the Monte Carlo accuracy by getting var(Âv) <<

var(Âu).

1.3. A rare event example: Importance sampling is particularly helpful
in estimating probabilities of rare events. As a simple example, consider the
problem of estimating P (X > a) (corresponding to φ(x) = 1x>a) when X ∼
N (0, 1) is a standard normal random variable and a is large. The naive Monte
Carlo method would be to generate N sample standard normals, Xk, and take






Xk ∼ N (0, 1), k = 1, · · · , N ,

A = P (X > a) ≈ Âu =
1

N
# {Xk > a} =

1

N

∑

Xk>a

1 . (4)

For large a, the hits, Xk > a, would be a small fraction of the samples, with the
rest being wasted.

One importance sampling strategy uses v corresponding to N (a, 1). It
seems natural to try to increase the number of hits by moving the mean from
0 to a. Since most hits are close to a, it would be a mistake to move the
mean farther than a. Using the probability densities u(x) = 1√

2π
e−x2/2 and

v(x) = 1√
2π

e−(x−a)2/2, we find L(x) = u(x)/v(x) = ea2/2e−ax. The importance

sampling estimate is






Xk ∼ N (a, 1), k = 1, · · · , N ,

A ≈ Âv =
1

N
ea2/2

∑

Xk>a

e−aXk .

Some calculations show that the variance of Âv is smaller than the variance
of of the naive estimator Âu by a factor of roughly e−a2/2. A simple way to
generate N (a, 1) random variables is to start with mean zero standard normals

Yk ∼ N (0, 1) and add a: Xk = Yk + a. In this form, ea2/2e−aXk = e−a2/2e−aYk ,
and Xk > a, is the same as Yk > 0, so the variance reduced estimator becomes






Yk ∼ N (0, 1), k = 1, · · · , N ,

A ≈ Âv = e−a2/2 1

N

∑

Yk>0

e−aYk . (5)

The naive Monte Carlo method (4) produces a small Â by getting a small
number of hits in many samples. The importance sampling method (5) gets

roughly 50% hits but discounts each hit by a factor of at least e−a2/2 to get the
same expected value as the naive estimator.

2



1.4. Radon Nikodym derivative: Suppose Ω is a measure space with
σ−algebra F and probability measures P and Q. We say that L(ω) is the
Radon Nikodym derivative of P with respect to Q if dP (ω) = L(ω)dQ(ω), or,
more formally, ∫

Ω

V (ω)dP (ω) =

∫

Ω

V (ω)L(ω)dQ(ω) ,

which is to say
EP [V ] = EQ[V L] , (6)

for any V , say, with EP [|V |] < ∞. People often write L = dP
dQ , and call it

the Radon Nikodym derivative of P with respect to Q. If we know L, then the
right side of (6) offers a different and possibly better way to estimate EP [V ].
Our goal will be a formula for L when P and Q are measures corresponding to
different SDEs.

1.5. Absolute continuity: One obstacle to finding L is that it may not exist.
If A is an event with P (A) > 0 but Q(A) = 0, L cannot exist because the
formula (6) would become

P (A) =

∫

A

dP (ω) =

∫

Ω

1A(ω)dP (ω) =

∫

Ω

1A(ω)L(ω)dQ(ω) .

Looking back at our definition of the abstract integral, we see that if the event
A = {f(ω) 6= 0} has Q(A) = 0, then all the approximations to

∫
f(ω)dQ(ω) are

zero, so
∫

f(ω)dQ(ω) = 0.
We say that measure P is absolutely continuous with respect to Q if P (A) =

0 ⇒ Q(A) = 0 for every1 A ∈ F . We just showed that L cannot exist unless
P is absolutely continuous with respect to Q. On the other hand, the Radon

Nikodym theorem states that an L satisfying (6) does exist if P is absolutely
continuous with respect to Q.

If P is absolutely continuous with respect to Q and Q is absolutely continuous
with respect to P , then we say the measures P and Q are equivalent to each
other. In most practical examples in which P is absolutely continuous with
respect to Q, P and Q are actually equivalent. In that case, dQ

dP = 1/ dP
dQ =

1/L(ω). In most practical examples in which P is not absolutely continuous
with respect to Q, P and Q are completely singular with respect to each other
(sometimes called orthogonal to each other). This means that there is an event,
A ∈ F with P (A) = 1 and Q(A) = 0.

1.6. Discrete probability: In discrete probability, with a finite or countable
state space, P is absolutely continuous with respect to Q if and only if P (ω) > 0
whenever Q(x) > 0. In that case, L(ω) = P (ω)/Q(ω). If P and Q represent
Markov chains on a discrete state space, then P is not absolutely continuous

1This assumes that measures P and Q are defined on the same σ−algebra. It is useful
for this reason always to use the algebra of Borel sets. It is common to imagine completing

a measure by adding to F all subsets of events with P (A) = 0. It may seem better to have
more measurable events, it makes the change of measure discussions more complicated.
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with respect to Q if the transition matrix for P (also called P ) allows transitions
that are not allowed in Q.

1.7. Finite dimensional spaces: If Ω = Rn and the probability measures are
given by densities, then P may fail to be absolutely continuous with respect to
Q if the densities are different from zero in different places. An example with
n = 1 is P corresponding to a negative exponential random variable u(x) = ex

for x ≤ 0 and u(x) = 0 for x > 0, while Q corresponds to a positive exponential
v(x) = e−x for x ≥ 0 and v(x) = 0 for x < 0.

Another way to get singular probability measures is to have measures using δ
functions concentrated on lower dimensional sets. An example with Ω = R2 has
Q saying that X1 and X2 are independent standard normals while P says that
X1 = X2. The probability “density” for P is u(x1, x2) = 1√

2π
e−x2

1/2δ(x2 − x1).

The event A = {X1 = X2} has Q probability zero but P probability one.

1.8. Testing for singularity: It sometimes helps to think of complete singu-
larity of measures in the following way. Suppose we learn the outcome, ω and
we try to determine which probability measure produced it. If there is a set
A with P (A) = 1 and Q(A) = 0, then we report P if ω ∈ A and Q if ω /∈ A.
We will be correct 100% of the time. Conversely, if there is a way to determine
whether P of Q was used to generate ω, then let A be the set of outcomes that
you say came from P and you have P (A) = 1 because you always are correct
in saying P if ω came from P . Also Q(A) = 0 because you never say Q when
ω ∈ A.

Common tests involve statistics, i.e. functions of ω. If there is a (measurable)
statistic F (ω) with F (ω) = a almost surely with respect to P and F (ω) = b 6= a
almost surely with respect to Q, then we take A = {ω ∈ Ω | F (ω) = a} and see
that P and Q are completely singular with respect to each other.

1.9. Coin tossing: In common situations where this works, the function F (ω)
is a limit that exists almost surely (but with different values) for both P and Q.
If limn→∞ Fn(ω) = a almost surely with respect to P and limn→∞ Fn(ω) = b
almost surely with respect to Q, then P and Q are completely singular.

Suppose we make an infinite sequence of coin tosses with the tosses being
independent and having the same probability of heads. We describe this by
taking ω to be infinite sequences ω = (Y1, Y2, . . .), where the kth toss Yk equals
one or zero, and the Yk are independent. Let the measure P represent tossing
with Yk = 1 with probability p, and Q represent tossing with Yk = 1 with
probability q 6= p. Let Fn(ω) = 1

n

∑n
k=1 Yk. The (Kolmogorov strong) law of

large numbers states that Fn → p as n → ∞ almost surely in P and Fn →
q as n → ∞ almost surely in Q. This shows that P and Q are completely
singular with respect to each other. Note that this is not an example of discrete
probability in our sense because the state space consists of infinite sequences.
The set of infinite sequences is not countable (a theorem of Cantor).

1.10. The Cameron Martin formula: The Cameron Martin formula relates
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the measure, P , for Brownian motion with drift to the Wiener measure, W , for
standard Brownian motion without drift. Wiener measure describes the process

dX(t) = dB(t) . (7)

The P measure describes solutions of the SDE

dX(t) = a(X(t), t)dt + dB(t) . (8)

For definiteness, suppose X(0) = x0 is specified in both cases.

1.11. Approximate joint probability measures: We find the formula for
L(X) = dP (X)/dW (X) by taking a finite ∆t approximation, directly comput-
ing L∆t, and observing the limit of L as ∆t → 0. We use our standard notations
tk = k∆t, Xk ≈ X(tk), ∆Bk = B(tk+1) − B(tk), and ~X = (X1, . . . , Xn) ∈ Rn.
The approximate solution of (8) is

Xk+1 = Xk + ∆ta(Xk, tk) + ∆Bk . (9)

This is exact in the case a = 0. We write V (~x) for the joint density of ~X for
W and U(~x) for teh joint density under (9). We calculate L∆t(~x) = U(~x)/V (~x)
and observe the limit as ∆t → 0.

To carry this out, we again note that the joint density is the product of the
transition probability densities. For (7), if we know xk, then Xk+1 is normal
with mean xk and variance ∆t. This gives

G(xk, xk+1, ∆t) =
1√

2π∆t
e−(xk+1−xk)2/2∆t ,

and

V (~x) =
(
2π ∆t

)−n/2
exp

(
1

2∆t

n−1∑

k=0

(xk+1 − kk)2

)
. (10)

For (9), the approximation to (8), Xk+1 is normal with mean xk + ∆ta(xk, tk)
and variance ∆t. This makes its transition density

G(xk, xk+1, ∆t) =
1√

2π∆t
e−(xk+1−xk−∆ta(xk,tk))2/2∆t ,

so that

U(~x) =
(
2π ∆t

)−n/2
exp

(
1

2∆t

n−1∑

k=0

(xk+1 − kk − ∆ta(xk, tk))2

)
. (11)

To calculate the ratio, we expand (using some obvious notation)

(
∆Xk − ∆tak

)2
= ∆x2

k − 2∆t∆xk + ∆t2a2
k .
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Dividing U by V removes the 2π factors and the ∆x2
k in the exponents. What

remains is

L∆t(~x) = U(~x)/V (~x)

= exp

(
n−1∑

k=0

(a(xk), tk)(xk+1 − xk) − ∆t

2

n−1∑

k=0

a(xk), tk)2

)
.

The first term in the exponent converges to the Ito integral

n−1∑

k=0

(a(xk), tk)(xk+1 − xk) →
∫ T

0

a(X(t), t)dX(t) as ∆t → 0,

if tn = max {tk < T }. The second term converges to the Riemann integral

∆t

n−1∑

k=0

a(xk), tk)2 →
∫ T

0

a2(X(t), t)dt as ∆t → 0.

Altogether, this suggests that if we fix T and let ∆t → 0, then

dP

dW
= L(X) = exp

(∫ T

0

a(X(t), t)dX(t) − 1

2

∫ T

0

a2(X(t), t)dt

)
. (12)

This is the Cameron Martin formula.

2 Multidimensional diffusions

2.1. Introduction: Some of the most interesting examples, curious phenom-
ena, and challenging problems come from diffusion processes with more than one
state variable. The n state variables are arranged into an n dimensional state
vector X(t) = (X1(t), . . . , Xn(t))t. We will have a Markov process if the state
vector contains all the information about the past that is helpful in predicting
the future. At least in the beginning, the theory of multidimensional diffusions
is a vector and matrix version of the one dimensional theory.

2.2. Strong solutions: The drift now is a drift for each component of X ,
a(x, t) = (a1(x, t), . . . , an(x, t))t. Each component of a may depend on all com-
ponents of X . The σ now is an n × m matrix, where m is the number of
independent sources of noise. We let B(t) be a column vector of m independent

standard Brownian motion paths, B(t) = (B1(t), . . . , Bm(t))t. The stochastic
differential equation is

dX(t) = a(X(t), t)dt + σ(X(t), t)dB(t) . (13)

A strong solution is a function X(t, B) that is nonanticipating and satisfies

X(t) = X(0) +

∫ t

0

a(X(s), s)ds +

∫ t

0

σ(X(s), s)dB(s) .
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The middle term on the right is a vector of Riemann integrals whose kth com-
ponent is the standard Riemann integral

∫ t

0

ak(X(s), s)ds .

The last term on the right is a collection of standard Ito integrals. The kth

component is
m∑

j=1

∫ t

0

σkj(X(s), s)dBj(s) ,

with each summand on the right being a scalar Ito integral as defined in previous
lectures.

2.3. Weak form: The weak form of a multidimensional diffusion problem asks
for a probability measure, P , on the probability space Ω = C([0, T ], Rn) with
filtration Ft generated by {X(s) for s ≤ t} so that X(t) is a Markov process
with

E
[
∆X

∣∣ Ft

]
= a(X(t), t)∆t + o(∆t) , (14)

and
E
[
∆X∆Xt

∣∣ Ft

]
= µ(X(t), t)∆t + o(∆t) . (15)

Here ∆X = X(t+∆t)−X(t), we assume ∆t > 0, and ∆Xt = (∆X1, . . . , ∆Xn) is
the transpose of the column vector ∆X . The matrix formula (15) is a convenient
way to express the short time variances and covariances2

E
[
∆Xj∆Xk

∣∣ Ft

]
= µjk(X(t), t)∆t + o(∆t) . (16)

As for one dimensional diffusions, it is easy to verify that a strong solution of
(13) satisfies (14) and (15) with µ = σσt.

2.4. Backward equation: As for one dimensional diffusions, the weak form
conditions (14) and (15) give a simple derivation of the backward equation for

f(x, t) = Ex,t [V (X(T ))] .

We start with the tower property in the familiar form

f(x, t) = Ex,t [f(x + ∆X, t + ∆t)] , (17)

and expand f(x+∆X, t+∆t) about (x, t) to second order in ∆X and first order
in ∆t:

f(x + ∆X, t + ∆t) = f + ∂xk
f · ∆Xk + 1

2∂xj ∂xk
· ∆Xj∆Xk + ∂tf · ∆t + R .

2The reader should check that the true covariances
E
[
(∆Xj − E[∆Xj])(∆Xk − E[∆Xk])

∣∣ Ft

]
also satisfy (16) when E

[
∆Xj

∣∣ Ft

]
= O(∆t).
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Here follow the Einstein summation convention by leaving out the sums over j
and k on the right. We also omit arguments of f and its derivatives when the
arguments are (x, t). For example, ∂xk

f · ∆Xk really means

n∑

k=1

∂xk
f(x, t) · ∆Xk .

As in one dimension, the error term R satisfies

|R| ≤ C ·
(
|∆X |∆t + |∆X |3 + ∆t2

)
,

so that, as before,
E [|R|] ≤ C · ∆t3/2 .

Putting these back into (17) and using (14) and (15) gives (with the same
shorthand)

f = f + ak(x, t)∂xk
f∆t + 1

2µjk(x, t)∂xj ∂xk
f∆t + ∂tf∆t + o(∆t) .

Again we cancel the f from both sides, divide by ∆t and take ∆t → 0 to get

∂tf + ak(x, t)∂xk
f + 1

2µjk(x, t)∂xj ∂xk
f = 0 , (18)

which is the backward equation.
It sometimes is convenient to rewrite (18) in matrix vector form. For any

function, f , we may consider its gradient to be the row vector ▽xf = Dxf =
(∂x1

f, . . . , ∂xnf). The middle term on the left of (18) is the product of the
row vector Df and the column vector x. We also have the Hessian matrix of
second partials (D2f)jk = ∂xj ∂xk

f . Any symmertic matrix has a trace tr(M) =∑
k Mkk. The summation convention makes this just tr(M) = Mkk. If A and

B are symmetric matrices, then (as the reader should check) tr(AB) = AjkBjk

(with summation convention). With all this, the backward equation may be
written

∂tf + Dxf · a(x, t) + 1
2 tr(µ(x, t)D2

xf) = 0 . (19)

2.5. Generating correlated Gaussians: Suppose we observe the solution of
(13) and want to reconstruct the matrix σ. A simpler version of this problem
is to observe

Y = AZ , (20)

and reconstruct A. Here Z = (Z1, . . . , Zm) ∈ Rm, with Zk ∼ N (0, 1) i.i.d.,
is an m dimensional standard normal. If m < n or rank(A) < n then Y is a
degenerate Gaussian whose probability “density” (measure) is concentrated on
the subspace of Rn consisting of vectors of the form y = Az for some z ∈ Rm.
The problem is to find A knowing the distribution of Y .

2.6. SVD and PCA: The singular value decomposition (SVD) of A is a
factorization

A = UΣV t , (21)
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where U is an n×n orthogonal matrix (U tU = In×n, the n×n identity matrix),
V is an m×m orthogonal matrix (V tV = Im×m), and Σ is an n×m “diagonal”
matrix (Σjk = 0 if j 6= k) with nonnegative singular values on the diagonal:
Σkk = σk ≥ 0. We assume the singular values are arranged in decreasing order
σ1 ≥ σ2 ≥ · · ·. The singular values also are called principal components and
the SVD is called principal component analysis (PCA). The columns of U and
V (not V t) are left and right singular vectors respectively, which also are called
principal components or principal component vectors. The calculation

C = AAt = (UΣV t)(V ΣtU t) = UΣΣtU t

shows that the diagonal n × n matrix Λ = ΣΣt contains the eigenvalues of
C = AAt, which are real and nonnegative because C is symmetric and positive
semidefinite. Therefore, left singular vectors, the columns of C, are the eigen-
vectors of the symmetric matrix C. The singular values are the nonnegative
square roots of the eigenvalues of C: σk =

√
λk. Thus, the singular values and

left singular vectors are determined by C. In a similar way, the right singular
vectors are the eigenvectors of the m × m positive semidefinite matrix AtA. If
n > m, then the σk are defined only for k ≥ m (there is no Σm+1,m+1 in the
n×m matrix Σ). Since the rank of C is at most m in this case, we have λk = 0
for k > m. Even when n = m, A may be rank deficient. The rank of A being l
is the same as σk = 0 for k > l. When m > n, the rank of A is at most n.

2.7. The SVD and nonuniqueness of A: Because Y = AZ is Gaussian
with mean zero, its distribution is determined by its covariance C = E[Y Y t] =
E[AZZtAt] = AE[ZZt]At = AAt. This means that the distribution of A
determines U and Σ but not V . We can see this directly by plugging (21) into
(20) to get

Y = UΣ(V tZ) = UΣZ ′ , where Z ′ = V tZ .

Since Z ′ is a mean zero Gaussian with covariance V tV = I, Z ′ has the same
distribution as Z, which means that Y ′ = UΣZ has the same distribution as Y .
Furthermore, if A has rank l < m, then we will have σk = 0 for k > l and we
need not bother with the Z ′

k for k > l. That is, for generating Y , we never need
to take m > n or m > rank(A).

For a simpler point of view, suppose we are given C and want to generate
Y ∼ N (0, C) in the form Y = AZ with Z ∼ N (0, I). The condition is that
C = AAt. This is a sort of square root of C. One solution is A = UΣ as above.
Another solution is the Choleski decomposition of C: C = LLt for a lower
triangular matrix L. This is most often done in practice because the Choleski
decomposition is easier to compute than the SVD. Any A that works has the
same U and Σ in its SVD.

2.8. Choosing σ(x, t): This non uniqueness of A carries over to non unique-
ness of σ(x, t) in the SDE (13). A diffusion process X(t) defines µ(x, t) through
(15), but any σ(x, t) with σσt = µ leads to the same distribution of X trajec-
tories. In particular, if we have one σ(x, t), we may choose any adapted matrix
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valued function V (t) with V V t ≡ Im×m, and use σ′ = σV . To say this another
way, if we solve dZ ′ = V (t)dZ(t) with Z ′(0) = 0, then Z ′(t) also is a Brownian
motion. (The Levi uniqueness theorem states that any continuous path process
that is weakly Brownian motion in the sense that a ≡ 0 and µ ≡ I in (14) and
(15) actually is Brownian motion in the sense that the measure on Ω is Wiener
measure.) Therefore, using dZ ′ = V (t)dZ gives the same measure on the space
of paths X(t).

The conclusion is that it is possible for SDEs wtih different σ(x, t) to repre-
sent the same X distribution. This happens when σσt = σ′σ′ t. If we have µ, we
may represent the process X(t) as the strong solution of an SDE (13). For this,
we must choose with some arbtirariness a σ(x, t) with σ(x, t)σ(x, t)t = µ(x, t).
The number of noise sources, m, is the number of non zero eigenvalues of µ. We
never need to take m > n, but m < n may be called for if µ has rank less than
n.

2.9. Correlated Brownian motions: Sometimes we wish to use the SDE model
(13) where the Bk(t) are correlated. We can accomplish this with a change in σ.
Let us see how to do this in the simpler case of generating correlated standard
normals. In that case, we want Z = (Z1, . . . , Zm)t ∈ Rm to be a multivariate
mean zero normal with var(Zk) = 1 and given correlation coefficients

ρjk =
cov(Zj , Zk)√
var(Zj)var(Zk)

= cov(Zj , Zk) .

This is the same as generating Z with covariance matrix C with ones on the
diagonal and Cjk = ρjk when j 6= k. We know how to do this: choose A with
AAt = C and take Z = AZ ′. This also works in the SDE. We solve

dX(t) = a(X(t), t)dt + σ(X(t), t)AdB(t) ,

with the Bk being independent standard Brownian motions. We get the effect
of correlated Brownian motions by using independent ones and replacing σ(x, t)
by σ(x, t)A.

2.10. Normal copulas (a digression): Suppose we have a probability den-
sity u(y) for a scalar random variable Y . We often want to generate families
Y1, . . . , Ym so that each Yk has the density u(y) but different Yk are correlated.
A favorite heuristic for doing this3 is the normal copula. Let U(y) = P (Y < y)
be the cumulative distribution function (CDF) for Y . Then the Yk will have
density u(y) if and only if U(Yk) − Tk and the Tk are uniformly distributed in
the interval [0, 1] (check this). In turn, the Tk are uniformly distributed in [0, 1]
if Tk = N(Zk) where the Zk are standard normals and N(z) is the standard
normal CDF. Now, rather than generating independent Zk, we may use corre-
lated ones as above. This in turn leads to correlated Tk and correlated Yk. I do

3I hope this goes out of fashion in favor of more thoughtful methods that postulate some
mechanism for the correlations.
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not know how to determine the Z correlations in order to get a specified set of
Y correlations.

2.11. Degenerate diffusions: Many practical applications have fewer sources
of noise than state variables. In the strong form (13) this is expressed as m < n
or m = n and det(σ) = 0. In the weak form µ is always n × n but it may be
rank deficient. In either case we call the stochastic process a degenerate diffu-

sion. Nondegenerate diffusions have qualitative behavior like that of Brownian
motion: every component has infinite total variation and finite quadratic varia-
tion, transition densities are smooth functions of x and t (for t > 0) and satisfy
forward and backward equations (in different variables) in the usual sense, etc.
Degenerate diffusions may lack some or all of these properties. The qualitative
behavior of degenerate diffusions is subtle and problem dependent. There are
some examples in the homework. Computational methods that work well for
nondegenerate diffusions may fail for degenerate ones.

2.12. A degenerate diffusion for Asian options: An Asian option gives a
payout that depends on some kind of time average of the price of the under-
lying security. The simplest form would have th eunderlier being a geometric
Brownian motion in the risk neutral measure

dS(t) = rS(t)dt + σS(t)dB(t) , (22)

and a payout that depends on
∫ T

0
S(t)dt. This leads us to evaluate

E [V (Y (T ))] ,

where

Y (T ) =

∫ T

0

S(t)dt .

To get a backward equation for this, we need to identify a state space so
that the state is a Markov process. We use the two dimensional vector

X(t) =

(
S(t)
Y (t)

)
,

where S(t) satisfies (22) and dY (t) = S(t)dt. Then X(t) satisfies (13) with

a =

(
rS
S

)
,

and m = 1 < n = 2 and (with the usual double meaning of σ)

σ =

(
Sσ
0

)
.

For the backward equation we have

µ = σσt =

(
S2σ2 0

0 0

)
,

11



so the backward equation is

∂tf + rs∂sf + s∂yf +
s2σ2

2
∂2

sf = 0 . (23)

Note that this is a partial differential equation in two “space variables”,
x = (s, y)t. Of course, we are interested in the answer at t = 0 only for y = 0.
Still, we have include other y values in the computation. If we were to try the
standard finite difference approximate solution of (23) we might use a central

difference approximation ∂yf(s, y, t) ≈ 1
2∆y (f(s, y + ∆y, t) − f(s, y − ∆y, t)).

If σ > 0 it is fine to use a central difference approximation for ∂sf , and this
is what most people do. However, a central difference approximation for ∂yf
leads to an unstable computation that does not produce anything like the right
answer. The inherent instability of centeral differencing is masked in s by the
strongly stabilizing second derivative term, but there is nothing to stabalize the
unstable y differencing in this degenerate diffusion problem.

2.13. Integration with dX : We seek the anologue of the Ito integral and
Ito’s lemma for a more general diffusion. If we have a function f(x, t), we seek
a formula df = adt + bdX . This would mean that

f(X(T ), T ) = f(X(0), 0) +

∫ T

0

a(t)dt +

∫ T

0

b(t)dX(t) . (24)

The first integral on the right would be a Riemann integral that would be defined
for any continuous function a(t). The second would be like the Ito integral with
Brownian motion, whose definition depends on b(t) being an adapted process.
The definition of the dX Ito integral should be so that Ito’s lemma becomes
true.

For small ∆t we seek to approximate ∆f = f(X(t+∆t), t+∆t)−f(X(t), t).
If this follows the usual pattern (partial justification below), we should expand
to second order in ∆X and first order in ∆t. This gives (wth summation con-
vention)

∆f ≈ (∂xj f)∆Xj + 1
2 (∂xj ∂xk

f)∆Xj∆Xk + ∂tf∆t . (25)

As with the Ito lemma for Brownian motion, the key idea is to replace the
products ∆Xj∆Xk by their expected values (conditional on Ft). If this is true,
(15) suggests the general Ito lemma

df = (∂xj f)dXk +
(

1
2 (∂xj ∂xk

f)µjk + ∂tf
)
dt , (26)

where all quantities are evaluated at (X(t), t).

2.14. Ito’s rule: One often finds this expressed in a slightly different way. A
simpler way to represent the small time variance condition (15) is

E [dXjdXk] = µjk(X(t), t)dt .

12



(Though it probably should be E
[
dXjdXk

∣∣ Ft

]
.) Then (26) becomes

df = (∂xj f)dXk + 1
2 (∂xj ∂xk

f)E[dXjdXk] + ∂tfdt .

This has the advantage of displaying the main idea, which is that the fluctuations
in dXj are important but only the mean values of dX2 are important, not the
fluctuations. Ito’s rule (never enumciated by Ito as far as I know) is the formula

dXjdXk = µjkdt . (27)

Although this leads to the correct formula (26), it is not structly true, since the
standard defiation of the left side is as large as its mean.

In the derivation of (26) sketched below, the total change in f is represented
as the sum of many small increments. As with the law of large numbers, the
sum of many random numbers can be much closer to its mean (in relative terms)
than the random summands.

2.15. Ito integral: The definition of the dX Ito integral follows the definition
of the Ito integral with respect to Brownian motion. Here is a quick sketch
with many details missing. Suppose X(t) is a multidimensional diffusion pro-
cess, Ft is the σ−algebra generated by the X(s) for 0 ≤ s ≤ t, and b(t) is a
possibly random function that is adapted to Ft. There are n components of b(t)
corresponding to the n components of X(t). The Ito integral is (tk = k∆t as
usual): ∫ T

0

b(t)dX(t) = lim
∆t→0

∑

tk<T

b(tk) (X(tk+1) − X(tk)) . (28)

This definition makes sense because the limit exists (almost surely) for a rich
enough family of integrands b(t). Let Y∆t =

∑
tk<T b(tk) (X(tk+1) − X(tk)) and

write (for appropriately chosen T )

Y∆t/2 − Y∆t =
∑

tk<T

Rk ,

where
Rk =

(
b(tk+1/2) − b(tk)

)(
X(tk+1) − X(tk+1/2)

)
.

The bound
E
[(

Y∆t/2 − Y∆t

)2]
= O(∆tp) , (29)

implies that the limit (28) exists almost surely if ∆tl = 2−l.
As in the Brownian motion case, we assume that b(t) has the (lack of)

smoothness of Brownian motion: E[(b(t + ∆t) − b(t))2] = O(∆t). In the mar-
tingale case (drift = a ≡ 0 in (14)), E[RjRk] = 0 if j 6= k. In evaluating E[R2

k],
we get from (15) that

E
[∣∣X(tk+1) − X(tk+1/2)

∣∣2 ∣∣ Ftk+1/2

]
= O(∆t) .
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Since b(tt+1/2) is known in Ftk+1/2
, we may use the tower property and our

assumption on b to get

E[R2
k] ≤ E

[∣∣X(tk+1) − X(tk+1/2)
∣∣2 ∣∣b(tk+1/2) − b(t)

∣∣2
]

= O(∆t2) .

This gives (29) with p = 1 (as for Brownian motion) for that case. For the
general case, my best effort is too complicated for these notes and gives (29)
with p = 1/2.

2.16. Ito’s lemma: We give a half sketch of the proof of Ito’s lemma for
diffusions. We want to use k to represent the time index (as in tk = k∆t) so
we replace the index notation above with vector notation: ∂xf∆X instead of
∂xk

∆Xk, ∂2
x(∆Xk, ∆Xk) instead of (∂xj ∂xk

f)∆Xj∆Xk, and tr(∂2
xfµ) instead

of (∂xj ∂xk
f)µjk. Then ∆Xk will be the vector X(tk+1) − X(tk) and ∂2

xfk the
n × n matrix of second partial derivatives of f evaluated at (X(tk), tk), etc.

Now it is easy to see who f(X(T ), T ) − f(X(0), 0) =
∑

tk<T ∆Fk is given
by the Riemann and Ito integrals of the right side of (26). We have

∆fk = ∂tfk∆t + ∂xfk∆Xk + 1
2∂2

xfk(∆Xk, ∆Xk)

+ O(∆t2) + O (∆t |∆Xk|) + O
(∣∣∆X3

k

∣∣) .

As ∆t → 0, the contribution from the second row terms vanishes (the third
term takes some work, see below). The sum of the ∂tfk∆t converges to the

Riemann integral
∫ T

0
∂tf(X(t), t)dt. The sum of the ∂xfk∆Xk converges to the

Ito integral
∫ T

0
∂xf(X(t), t)dX(t). The remaining term may be written as

∂2
xfk(∆Xk, ∆Xk) = E

[
∂2

xfk(∆Xk, ∆Xk)
∣∣ Ftk

]
+ Uk .

It can be shown that

E
[
|Uk|2

∣∣ Ftk

]
≤ CE

[
|∆Xk|4

∣∣ Ftk

]
≤ C∆t2 ,

as it is for Brownian motion. This shows (with E[UjUk] = 0) that

E




∣∣∣∣∣
∑

tk<T

Uk

∣∣∣∣∣

2


 =
∑

tk<T

E
[
|Uk|2

]
≤ CT∆t ,

so
∑

tk<T Uk → 0 as ∆t → 0 almost surely (with ∆t = 2−l). Finally, the small
time variance formula (15) gives

E
[
∂2

xfk(∆Xk, ∆Xk)
∣∣ Ftk

]
= tr

(
∂2

xfkµk

)
+ o(∆t) ,

so

∑

tk<T

E
[
∂2

xfk(∆Xk, ∆Xk)
∣∣ Ftk

]
→
∫ T

0

tr
(
∂2

xf(X(t), t)µ(X(t), t)
)
dt ,
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(the Riemann integral) as ∆t → 0. This shows how the terms in the Ito lemma
(26) are accounted for.

2.17. Theory left out: We did not show that there is a process satisfying (14)
and (15) (existence) or that these conditions characterize the process (unique-
ness). Even showing that a process satisfying (14) and (15) with zero drift and
µ = I is Brownian motion is a real theorem: the Levi uniqueness theorem.
The construction of the stochastic process X(t) (existence) also gives bounds

on higher moments, such as E
[
|∆X |4

]
≤ C · ∆t2, that we used above. The

higher moment estimates are true for Brownian motion because the increments
are Gaussian.

2.18. Approximating diffusions: The formula strong form formulation of the
diffusion problem (13) suggests a way to generate approximate diffusion paths.
If Xk is the approximation to X(tk) we can use

Xk+1 = Xk + a(Xk, tk)∆t + σ(Xk, tk)
√

∆tZk , (30)

where the Zk are i.i.d. N (0, Im×m). This has the properties corresponding to
(14) and (15) that

E
[
Xk+1 − Xk

∣∣ X1, · · · , Xk

]
= a(Xk, tk)∆t

and
cov(Xk+1 − Xk) = µ∆t .

This is the forward Euler method. There are methods that are better in some
ways, but in a surprising large number of problems, methods better than this
are not known. This is a distinct contrast to numerical solution of ordinary
differential equations (without noise), for which forward Euler almost never is
the method of choice. There is much research do to to help the SDE solution
methodology catch up to the ODE solution methodology.

2.19. Drift change of measure:
The anologue of the Cameron Martin formula for general diffusions is the

Girsanov formula. We derive it by writing the joint densities for the discrete
time processes (30) with and without the drift term a. As usual, this is a
product of transition probabilities, the conditional probability densities for Xk+1

conditional on knowing Xj for j ≤ k. Actually, because (30) is a Markov
process, the conditional densityh for Xk+1 depends on Xk only. We write it
G(xk, xk+1, tk, ∆t). Conditional on Xk, Xk+1 is a multivariate normal with
covariance matrix µ(Xk, tk)∆t. If a ≡ 0, the mean is Xk. Otherwise, the mean
is Xk + a(Xk, tk)∆t. We write µk and ak for µ(Xk, tk) and a(Xk, tk).

Without drift, the Gaussian transition density is

G(xk, xk+1, tk, ∆t) =
1

(2π)n/2
√

det(µk)
exp

(−(xk+1 − xk)tµ−1
k (xk+1 − xk)

2∆t

)

(31)
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With nonzero drift, the prefactor

zk =
1

(2π)n/2
√

det(µk)

is the same and the exponential factor accomodates the new mean:

G(xk, xk+1, tk, ∆t) = zk exp

(−(xk+1 − xk − ak∆t)tµ−1
k (xk+1 − xk − ak∆t)

2∆t

)
.

(32)
Let U(x1, . . . , xN ) be the joint density without drift and U(x1, . . . , xN ) with
drift. We want to evaluate L(~x) = V (~x)/U(~x) Both U and V are products of
the appropriate transitions densities G. In the division, the prefactors zk cancel,
as they are the same for U and V because the µk are the same.

The main calculation is the subtraction of the exponents:

(∆xk−ak∆t)tµ−1
k (∆xk−ak∆t)−∆xt

kµ−1∆xk = −2∆tat
kµ−1

k ∆xk+∆t2at
kµ−1

k ak .

This gives:

L(~x) = exp

(
N−1∑

k=0

at
kµ−1

k ∆xk +
∆t

2

N−1∑

k=0

at
kµ−1

k ak

)
.

This is the exact likelihood ratio for the discrete time processes without drift.
If we take the limit ∆t → 0 for the continuous time problem, the two terms in
the exponent converge respectively to the Ito integral

∫ T

0

a(X(t), t)tµ(X(t), t)−1dX(t) ,

and the Riemann integral

∫ T

0

1

2
a(X(t), t)tµ(X(t), t)−1a(X(t), t)dt .

The result is the Girsanov formula

dP

dQ
= L(X)

= exp

(∫ T

0

a(X(t), t)tµ(X(t), t)−1dX(t) −
∫ T

0

1

2
a(X(t), t)tµ(X(t), t)−1a(X(t), t)dt

)
.(33)
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