
Up to now, all general diffusion processes have been defined as functions of
Brownian motion. The Ito integral produces Xt as a function of W[0,t] (our nota-
tion for the Brownian motion path values on the interval [0, t]). More precisely,
we used the filtration Ft generated by W0,t] and created stochastic processes
Xt that were measurable in Ft. We called such processes non-anticipating, or
adapted, or whatever. This meant that the value of Xt was determined by the
values Ws for 0 ≤ s ≤ t. We now turn to a more general diffusion process that
is discussed on its own terms rather than in terms of a Brownian motion that
might generate it.

A related idea is the difference between strong and weak solutions of stochas-
tic differential equations, SDE’s. An SDE takes the form

dXt = a(Xt)dt + b(Xt)dWt . (1)

Models of continuous time dynamics with randomness often take this form. A
strong solution is a progressively measurable function Xt(W[0,t], t) so that

Xt − X0 =
∫ t

0

a(Xs) ds +
∫ t

0

b(Xs) dWs . (2)

The favorite example is geometric Brownian motion, which is the SDE

dXt = µXtdt + σXtdWt . (3)

The solution is
Xt = X0e

σWt+
(
µ−σ2

2

)
t (4)

It is a simple exercise to take u(w, t) = X0e
σw+

(
µ−σ2

2

)
t, compute the partial

derivatives in Ito’s lemma and check that they fit together in a way that (4)
satisfies (3). This is the strong solution to (3), which is the solution given as a
function of Brownian motion.

Before getting to weak solution, here is another piece of mathematical short-
hand, the little o notation. We say that f(t) = o(g(t)) if g → 0 as t→ 0, g(t) > 0
if t > 0, and f(t)/g(t) → 0 as t → 0. This just says that f is small relative
to g as t → 0. For example, if f(0) = 0 and f is differentiable at t = 0, then
f(t) = f ′(0) t + o(t). This says that limt→0 |f(t)− t f ′(0)| /t = 0. In other
words, the error in the first derivative approximation is smaller than the ap-
proximation, or the error as a percent of the answer goes to zero with t. We use
the little o notation to avoid making highly technical and ultimately irrelevant
precise statements about the accuracy of an approximation. For example, if f
has two derivatives, then f(t) = f(0) + tf ′(0) + O(t2). This gives the sharper
bound Ct2 instead of just o(t). In our applications it often is easy to get error
bounds O(t3/2), which is o(t) but less so than O(t2) (whatever “less so” might
mean). Instead of arguing about just how small the error term might be, I say
o(t) which is (a) true, (b) easy to verify, (c) enough of an error bound for our
purposes.
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A weak solution is just a stochastic process (probability space Ω, filtration
Ft, functions Xt measurable with respect to Ft) that satisfies (1) in the sense
that (use the notation ∆X = Xt+∆t −Xt)

E[ ∆X | Ft] = a(Xt)∆t + o(∆t) , (5)

and
E
[

∆X2 | Ft
]

= b(X2
t )∆t + o(∆t) , (6)

and
E
[

∆X4 | Ft
]

= o(∆t) . (7)

We verified last week that the strong solution that satisfies (2) satisfies (5) and
(6). As it says above, the error bounds o(∆t) are not sharp. The statements
are true with o(∆t) replaced by the stronger error bounds O(∆t2). The reason
not to bother with that is that the stronger bounds are harder to prove, and
the difference does not matter for the applications we have in mind.

The point of the weak formulation, rather than the strong Brownian motion
formulation, is that one can determine the coefficients a(x) and b(x) directly
from the application using (5) and (6). Here is an example of an SDE model
derived using such reasoning. It is a queue with abandonment. At time t there
are Nt customers in the queue. If Nt > 0, the server is at work on one of the
customers. If the server is working, there is a probability µdt that the service
finished in time interval dt. Another way to say this is to say that the service
time is an exponential random variable with rate constant µ. In the language
of continuous time Markov chains, this translates to

Pr(N → N − 1 in time dt because of service ) = µdt .

New customers arrive as a poisson process with rate constant λ. This means
that the probability of a new arrival in time dt is λdt:

Pr(N → N + 1 in time dt because of arrival ) = λdt .

Abandonment is when a waiting customer leaves without service. We model this
with an abandonment rate r. A waiting customer abandons in time interval dt
with probability rdt, with all abandonment decisions being independent. The
result is

Pr(N → N − 1 in time dt because of abandonment ) = rNtdt .

Given that all these events are unlikely in a small interval of time, it is even
more unlikely that more than one event will happen. Therefore, we use only
single event probabilities in the calculations below.

If Nt is large it is natural to make a model in which Nt is a continuous
variable rather than discrete. A simple instance of this is the bacteria growth
models you study in calculus. There, Nt is the number of bacterial in a dish
at time t, which is modeled as satisfying the differential equation d

dtN = gN ,
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where g is a growth rate coefficient. Even though the actual number of bacteria
at any given time is an integer, there is little to gain by distinguishing between
N = 1, 000, 000 and N = 1, 000, 001, or the obviously inexact but very accurate
N = 1, 000, 000.43. The point is that if N is large and if goes up and down by
single one unit at a time, it makes sense to model Nt as a continuously varying
even though that is not exactly true.

This is the informal way to make an SDE model of the queue with aban-
donment system. We will discuss a more formal systematic approach through
scaling at some point. You just compute E[∆N | Ft] and E[(∆N)2 | Ft]. Then
you look at the calculation and identify a(N) and b(N). In the present case,

E[ ∆N | Ft] = (+1) · Pr(N → N + 1) + (−1) · Pr(N → N − 1)
= λdt − (µ+Ntr) dt
= (λ− µ− rNt) dt .

The variance calculation is easier still. The only possible non-zero value of
(∆N)2 is (∆N)2 = 1, and that has probability (λ+ µ+ rNt) dt. Therefore

E[ ∆N | Ft] = (λ+ µ+ rNt) dt .

Therefore, if there is a valid SDE model, it is

dNt = (λ− µ− rNt) dt + (λ+ µ+ rNt)
1/2

dWt . (8)

This model is valid, if at all, when Nt is large. This is why we did not bother
to think about what happens when Nt = 0 and there are no service events. To
stress this point yet again, the SDE (8) refers to a Brownian motion Wt, but
that is purely for convenience. The derivation had nothing to do with Brownian
motion. The dWt term in (8) just stands for a random variable, the noise,
that (a) is non-anticipating, (b) has mean zero, (c) has variance dt, (d) has
continuous paths. It turns out that any such process is equivalent to Brownian
motion, but that fact is not really relevant for modeling.

Here is another calculation that illustrates the power of the weak side.1

Suppose Wk,t, for k = 1, . . . , n are independent standard Brownian motion
paths. We can form the vector Wt whose components are the Wk,t. This is a
standard n−dimensional Brownian motion, much in the way Z = (Z1, . . . Zn)
is an n component multivariate normal with independent components Zk ∼
N (0, 1). The standard multivariate normal in n dimensions is Z ∼ N (0, I).
Its components are independent one dimensional standard normals. The Bessel
process is the stochastic process

Rt = |Wt| =

(
n∑
k=1

W 2
k,t

)1/2

. (9)

We are going to write the SDE satisfied by Rt in the weak sense by calculating
E[ dR | Ft] and E

[
(dR)2 | Ft

]
.

1This is a reference to the dark side in Star Wars movies.
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The main trick to this calculation is the n variable version of Ito’s lemma.
Suppose Wt is a standard n component Brownian motion as above and we have
Xt = u(W, t), where u(w, t) = u(w1, . . . , wn, t) is a differentiable function of
its arguments. The answer here, as before, should depend on the first partial
derivatives of u and the second partials with respect to the w variables. It
should be enough to start with

du(Wt, t) =
n∑
k=1

[ ∂wku(Wt, t)] dWk,t

+ [ ∂tu(w, t)] dt

+
1
2

n∑
k=1

[
∂2
wk
u(Wt, t)

]
(dWk,t)

2

+
∑
j<k

[
∂wk∂wju(Wt, t)

]
(dWj,tdWk,t) .

On the third line on the right, we should replace (dWk,t)
2 by dt because E

[
(dWk,t)

2
]

=
dt, and the variance is too small to matter. We went over this in detail in the one
Brownian motion discussion, and it’s still true now. In the fourth and last line
on the right, we should replace (dWj,tdWk,t) by 0, because E[ (dWj,tdWk,t)] = 0
(because Wj and Wk are independent for j 6= k), and the variance (which is the
same size as for (dWk,t)

2 before), again is too small to matter. The Ito’s lemma
is

du(Wt, t) =
n∑
k=1

[ ∂wku(Wt, t)] dWk,t +

{
∂tu(w, t) +

1
2

n∑
k=1

∂2
wk
u(Wt, t)

}
dt

(10)
It is convenient to write this in vector/operator notation. The gradient of u
with respect to the vector w is, ∇wu. Its components are [∇wu]k = ∂wku. The
first sum on the left is the dot product of ∇wu with the vector dWt. That
is,
∑n
k=1 [ ∂wku(Wt, t)] dWk,t = ∇wu(Wt, t) dWt. The last term on the right

involves the Laplace operator, or the Laplacian applied to u. The definition is

4wu(w, t) =
n∑
k=1

∂2
wk
u(w, t) .

This leads to the more compact statement

du(Wt, t) = ∇wu(Wt, t) dWt +
(
∂tu(Wt, t) +

1
2
4w u(Wt, t)

)
dt . (11)

This is Ito’s lemma for multi-dimensional Brownian motion.
To apply (11) to the Bessel process (9) we have to compute ∇u and 4u,

where u(w) = |w| =
(∑

k w
2
k

)1/2. The first derivative is an application of the
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chain rule:

∂w1

(∑
k

w2
k

)1/2

=
1
2

(∑
k

w2
k

)−1/2

· 2w1 = w1

(∑
k

w2
k

)−1/2

.

The second derivative is (with the product rule and the chain rule)

∂2
w1
u = ∂w1

w1

(∑
k

w2
k

)−1/2


=

(∑
k

w2
k

)−1/2

+ w1 · 2w1

(
−1
2

)(∑
k

w2
k

)−3/2

=
1
|w|
− w2

1

|w|3
.

Summing over k gives

4|w| =
n∑
k=1

∂2
wk
|w| =

1
|w|

[
n∑
k=1

(
1− w2

k

|w|2

)]
=

1
|w|

[
n−

∑n
k=1 w

2
k

|w|2

]
=

n− 1
|w|

.

When we put these calculations into the general formula (11), the result is

dRt = d |Wt| =
1
|Wt|

Wt dWt +
1
2
n− 1
|Wt|

dt . (12)

The purpose of all this algebra was the calculation of E[dR] and E[dR2].
When we calculate E[dRt | Ft] we use the fact that Wt is known in Ft and
E[dWt | Ft] = 0. Therefore,

E[ dRt | Ft] =
1
2
n− 1
Rt

dt .

For the variance calculation, we ignore the drift part just used. Then we calcu-
late

E

[∣∣∣∣ 1
|Wt|

Wt dWt

∣∣∣∣2
]

=
1
R2
t

n∑
k=1

W 2
k,tE

[
(dWk,t)

2 | Ft
]

=
1
R2
t

n∑
k=1

W 2
k,t dt = dt .

You might think there is a shorter way to get a result this simple. There is,
but it would take me as long to explain it as this calculation. However you get
there, the result is

dRt =
n− 1

2
1
Rt

dt + dWt . (13)

Warning: the Wt here is a one dimensional Brownian motion. In the weak
formulation, we do not try to relate it to the n dimensional Brownian motion
used to define the Bessel process.
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Look for a moment at the terms in (13). The noise term for Rt is the same
as for ordinary Brownian motion. The drift term is positive. It expresses the
fact that a multi-dimensional Brownian motion is more likely to move away
from the origin than toward the origin. As a check on the calculation, note that
this outward “force” vanishes in one dimension as it should. The outward force
becomes infinite as R→ 0 reflecting the fact that it becomes increasingly hard
to make progress toward the origin as you get close. The coefficient n − 1 has
a big impact on the behavior near zero. For n > 2 (non-integer values of n
are allowed here) the probability is zero for Rt ever to reach zero. That is, in
dimensions 3 and higher, the multivariate Brownian motion never touches the
origin (if it does not start there). For n = 2 the situation is completely reversed.
Indeed, Rt = 0 for some t > 0 almost surely.

You can understand the outward drift in the following geometrical way.
Think of the circle (or sphere, if n > 2) of radius Rt. Ask whether Wt+∆t

(the multi-variate Brownian motion) is more likely to be inside or outside of
this sphere. The sphere curves toward the origin, so the volume near Wt

with r < Rt is slightly less than the volume with r > Rt. For this reason,
Rt+∆t = |Wt+∆t| > Rt is slightly more likely than Rt+∆t < Rt. The outward
“force” arises from the geometry of spheres rather than a physical force.

6


