
1 Diffusion processes, strong and weak

A diffusion is a random process that satisfies

dXt = Gtdt + FtdWt . (1)

To be more precise, the coefficients Gt and Ft are progressively measurable with
respect to a filtration Ft, as is Xt. In general the coefficients Ft and Gt are not
required to be functions of Xt, but only to be known at time t. For example, we
could take Ft = max0≤s≤tXs. It also is possible to take Ft and Gt to depend
on more than just the sample path X[0,t], such as another random process. In
that case we talk about diffusions with random coefficients.

There are two ways to interpret the formula (1), which are called strong and
weak respectively. The strong interpretation takes (1) literally and asks that
Gtdt+ FtdWt be the Ito differential of Xt, in the sense that

Xt = X0 +
∫ t

0

Gs ds +
∫ t

0

Fs dWs . (2)

This is most convenient for mathematical analysis. Clearly (2) implies (1).
More convenient for applications is the weak interpretation, which simply

asks that if ∆X = Xt+∆t −Xt (and ∆t > 0), then

E[ ∆X | Ft ] = Gt∆t + o(∆t) , (3)

E
[

∆X2 | Ft

]
= F 2

t ∆t + o(∆t) , (4)

and that Xt is a continuous function of t. The latter condition follows from, for
example,

E
[

∆X4 | Ft

]
= O

(
∆t2

)
. (5)

Pay attention to the fact that these conditions do not mention the Brownian
motion path W . Whether or not Xt satisfies (1) in the weak sense makes no
reference to Brownian motion, but depends only on Xt. In applications, we
want to study processes for which we can do the calculations (3) and (4) but
have no interest in a hypothetical Brownian motion path that may be related
to Xt but is not clear in the system we are modeling.

2 Quadratic variation and total variation

There are various ways to measure how much a function of t moves, or how
“active” it is. This section concerns two of these, total variation and quadratic
variation. Total variation is familiar to those who have taken enough math-
ematical analysis. It measures the total amount of movement of a function.
Quadratic variation is more subtle. It is appropriate for a class of functions
whose total variation is infinite but yet are not infinitely bad. Brownian mo-
tion and most other diffusions are in the category of functions with infinite
total variation but finite quadratic variation. Quadratic variation is a useful
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practical quantity in some parts of finance. It measures the difficulty of carry-
ing out hedging strategies for options. It even is possible to buy instruments
whose value is determined by (an approximation to) the quadratic variation of
a realized financial data series (variance swaps).

If f(t) is a differentiable function of t, then the total variation of f up to
time T is

Vf (T ) =
∫ T

0

|∂tf(t)| dt . (6)

This may be expressed as a limit like the limits used to define integrals. For
small ∆t define tk = k∆t, then

Vf (T ) = lim
∆t→0

∑
tk<T

|f(tk+1)− f(tk)| . (7)

Moreover, it is not even necessary that the points tk be uniformly spaced. Let
Sn(T ) be the set of all increasing sequences of n times less than T . That is, a
sequence (t1, t2, . . . , tn) is in Sn(T ) if it is increasing (tk+1 ≥ tk), non-negative
(t1 ≥ 0), and bounded by T (tn ≤ T ). We implicitly takt t0 = 0 in formulas
involving Sn(T ). For differentiable functions, the definition (6) is equivalent to

Vf (T ) = lim
n→∞

sup
Sn(T )

n−1∑
k=0

|f(tk+1)− f(tk)| . (8)

(Recall that sup, for supremum, is appropriate if there is no actual largest value.)
Even a discontinuous function can have well defined and finite total variation
in the sense of (7) or (8). For example, if f(t) = 2 for t < 1 and f(t) = 4 for
t ≥ 1, then Vf (T ) = 0 if T < 1 and Vf (T ) = 2 for T ≥ 1. In general, if f has
jump discontinuities, the total variation includes the sizes of all the jumps up
to time T .

For total variation, (8) is the “right” definition. Despite seeming more com-
plicated than (7) it actually is easier to work with. Also, (8) can detect “vari-
ation” that (7) cannot. For example, suppose f(t) = 0 for all t except that
f(
√

2) = 1. Then (8) gives Vf (T ) = 2 as long as T >
√

2. But the quantity in
the limit in (7) is equal to 0 unless

√
2 is a multiple of ∆t. Be that as it may,

the notion of quadratic variation is related to (7) rather than (8). The random
functions we work with do not have one point discontinuities like that of f .

Although Brownian motion is continuous, its total variation is infinite, more
precisely, infinite almost surely. To see this, take T = 1 and ∆t = 1/n and take
the limit n→∞ in (7):

Rn =
n−1∑
k=0

∣∣∣W k+1
n
−W k

n

∣∣∣ .
The increment of Brownian motion is a mean zero Gaussian, so the distribution
of
∣∣∣W k+1

n
−W k

n

∣∣∣ is the same as the distribution of Zk/
√
n where the Zk are
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independent with Zk ∼ N (0, 1). Of course E[|Zk|] = C > 0 (the value is not
important here, but for the curious, C =

√
2/π). Therefore,

E[Rn ] = n
C√
n

=
√
nC → ∞ as n→∞.

Moreover, the law of large numbers (the sample average of i.i.d. random variables
converges almost surely to the actual mean) implies that

1√
n
Rn =

1
n

n−1∑
k=0

|Zk| → C as n→∞, almost surely.

If 1√
n
Rn → C then Rn →∞ as n→∞.

You can interpret this as saying that Brownian motion always moves in-
finitely fast. If f has finite total variation, you can define the average speed
over an interval as

average speed =
Vf (t2) − Vf (t1)

t2 − t1
.

The numerator represents the total distance travelled by f in the time interval
(t1, t2). The argument we just gave for Brownian motion applied to any time
interval and shows that the total distance travelled is infinite in any interval.
This means that the speed is always infinite. We already know that in time ∆t
the Brownian motion net change is ∆W = Wt+∆t −Wt is on the order of

√
∆t.

Therefore, you might say that the average speed over an interval ∆t is on the
order of ∆t−1/2. But this is misleading. Even in a small interval, W reverses
direction so often and so much that the total distance travelled is infinite. The
net distance is finite only because of cancellation. The distance travelled in
the up direction (which is infinite) is almost exactly balanced by the distanced
travelled in the down direction.

The quadratic variation of a function is (notation as in (7))

Qf (T ) = lim
∆t→0

∑
tk<T

|f(tk+1)− f(tk)|2 . (9)

This tolerates much larger ∆f = f(tk+1) − f(tk) than total variation does. If
∆f is small, then ∆f2 � ∆f , so it is possible for quadratic variation to be
finite when total variation is infinite.

For Brownian motion, the quadratic variation is proportional to T :

QW (T ) = T almost surely. (10)

To see this, again write ∆Wk = Wtk+1 −Wtk
=
√

∆tZk. Then∑
tk<T

|∆Wk|2 = ∆t
∑

tk<T

|Zk|2 → T as ∆t→ 0, almost surely.
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For small ∆t, |∆W |2 is smalser than |∆W | roughly by a factor of |∆W |, which
is of the order of

√
∆W . That’s how the quadratic variation sums (9) stay

bounded as the total variation sums (7) grow to infinity.
We continue with the theme that quadratic variation is for rougher functions

than total variation. If f is continuous and Vf (T ) <∞ then Qf (T ) = 0. Those
who know enough mathematical analysis will be able to prove this using the fact
that a continuous function on [0, T ] is uniformly continuous. But it is easier to
see, informally, that if f is differentiable then Qf (T ) = 0. That is because
∆fk = f(tk+1)− f(tk) ≈ ∆tf ′(tk) and

Qf(T ) ≈
∑

tk<T

|∆fk|2 ≈
∑

tk<T

(∆tf ′(tk))2 = ∆t
∑

tk<T

f ′(tk)2∆t ≈ ∆t
∫ T

0

f ′(tk)2 dt .

The rightmost side goes to zero as ∆t → 0. Altogether, we see that quadratic
variation is for continuous functions that move move infinitely fast despite being
continuous.

3 Quadratic variation of a diffusion

The general formula for the quadratic variation of a diffusion process that sat-
isfies (1) is

QX(T ) =
∫ T

0

F 2
t dt . (11)

Note that the right side is random in that the values of Ft depend on the path.
Unlike Brownian motion, the quadratic variation of a general diffusion is random
and path dependent. Also note that the quadratic variation depends only on
the noise coefficient Ft, not the drift part Gt. Technically, setting G = 0 makes
Xt a martingale: E[Xt+∆t | Ft] = Xt. This follows in the strong sense from the
fact that the Ito integral with respect to Brownian motion is a martingale. In
the weak sense it follows from (3).

We verify the quadratic variation formula (11) in the simpler case Gt = 0.
Later it will turn out that adding G makes the derivation more complicated
without changing the answer. So, suppose Xt satisfies (1) with G = 0 and
consider the sum

Q∆t
X (T ) =

∑
tk≤T

(
Xtk+1 −Xtk

)2
. (12)

During the next manipulations we will write (12) simply as Q∆t. As for the Ito
integral, the main ideas reasons for things to be true are clear already in the
proof that Q∆t has a limit as ∆t→ 0. A similar argument evaluates the limit as
(11). Also following our treatment of the Ito integral, we prove the limit exists
not for every sequence ∆t → 0 but for the powers of 2 ∆t = 2−n. And the
main point of that is to compare Q∆t to Q∆t/2. The summand in Q∆t, which is(
Xtk+1 −Xtk

)2 is broken into two terms in Q∆t/2, which are
(
Xtk+1 −Xt

k+ 1
2

)2

,
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and
(
Xt

k+ 1
2
−Xtk

)2

. Recall that tk+ 1
2

= (k + 1
2 )∆t is the time point in the

∆t/2 sum that is halfway between tk and tk+1 in the ∆t sum. The difference
between Q∆t and Q∆t/2 is (except for a possible term on the end that I ignore)

R =
∑

tk<T

Rk =
∑

tk<T

[(
Xtk+1 −Xt

k+ 1
2

)2

+
(
Xt

k+ 1
2
−Xtk

)2

−
(
Xtk+1 −Xtk

)2]
.

Note the algebraic “lemma”1

(c− b)2 + (b− a)2 − (c− a)2 = 2(c− b)(b− a) .

Thus,
Rk = 2

(
Xtk+1 −Xt

k+ 1
2

)(
Xt

k+ 1
2
−Xtk

)
.

This reveals the mechanism for R being small, which is E[Rk] = 0. We see this
using the tower property with Ft

k+ 1
2

and Ftk
:

E[Rk | Ftk
] = E

{
E
[
Rk | Ft

k+ 1
2

]
| Ftk

}
= 2E

{
E
[(
Xtk+1 −Xt

k+ 1
2

)(
Xt

k+ 1
2
−Xtk

)
| Ft

k+ 1
2

]
| Ftk

}
= 2E

{(
Xt

k+ 1
2
−Xtk

)
E
[(
Xtk+1 −Xt

k+ 1
2

)
| Ft

k+ 1
2

]
| Ftk

}
.

In the last step we used the fact that Xt
k+ 1

2
− Xtk

is known at time tk+ 1
2
,

so it is a constant in Ft
k+ 1

2
and comes out of the inner expectation. Finally,

E
[
Xtk+1 −Xt

k+ 1
2
| Ft

k+ 1
2

]
= 0 because Xt is a martingale. Altogether, we have

shown that
E[Rk | Ftk

] = 0 . (13)

Still following the discussion of the Ito integral, we show that the sum R is
small by computing the expected square and using (13) together with the tower
property. The result is

E
[
R2
]

=
∑

tj<T, tk<T

E[RjRk] .

In the sum, either j = k or j < k or j > k. If j < k then Rj is known in Ftk
,

so (with (13))

E[RjRk] = E{E[RjRk | Ftk
]} = E{Rj E[Rk | Ftk

]} = E {Rj · 0} = 0 .

1You can derive this without doing the algebra by noting that the left side vanishes when
c = b or b = a. This means that there must be a factor of (c− b) and a factor of (b−a). Since
the left side is quadratic, and (c− b)(b− a) is quadratic, they are equal up to a constant. You
can evaluate the constant by setting a = c = 0, in which case the left side is 2b2.
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The terms j > k vanish for the same reason. The j = k terms do not vanish
but are easy to estimate:

E
[
R2

k

]
= 4E

[(
Xtk+1 −Xt

k+ 1
2

)2 (
Xt

k+ 1
2
−Xtk

)2
]

= 4E
{
E

[(
Xtk+1 −Xt

k+ 1
2

)2 (
Xt

k+ 1
2
−Xtk

)2

| Ft
k+ 1

2

]}
= 4E

{(
Xt

k+ 1
2
−Xtk

)2

E

[(
Xtk+1 −Xt

k+ 1
2

)2

| Ft
k+ 1

2

]}
≈ 4E

{(
Xt

k+ 1
2
−Xtk

)2

F 2
t
k+ 1

2

∆t
2

}
.

The last step uses (4) and the fact that tk+1 = tk+ 1
2

+ ∆t
2 . Now suppose Ft

k+ 1
2

is bounded and get

E

{(
Xt

k+ 1
2
−Xtk

)2

F 2
t
k+ 1

2

}
≤ CE

{(
Xt

k+ 1
2
−Xtk

)2
}
≤ C∆t .

Altogether, E[R2
k] ≤ C∆t2, so E[R2] ≤ C

∑
tk<T ∆t2 = CT∆t. Now look back

at the Borel-Cantelli type lemma in the discussion of the Ito integral convergence
and you will see that this implies that the limit of the Q2−n

exists almost surely
as n→∞.

We can establish the value of the limit using similar methods. We want to
show that ∑

tk<T

(
Xtk+1 −Xtk

)2 ≈ ∑
tk<T

F 2
tk

∆t . (14)

So we compute the expected square of the difference, which is

S =
∑

tk<T

Sk =
∑

tk<T

[(
Xtk+1 −Xtk

)2 − Ftk
∆t
]

In the double sum for E[S2], the j 6= k terms are small for the same reasons as
before. This is the reason (4) refers to conditional variance with respect to Ft

rather than simple unconditional variation. The terms j = k have

E
[
S2

k

]
= O(∆t2) . (15)

Therefore, the difference between the right and left sides of (14) has expected
square E[S2] = O(∆t)→ 0 as ∆t→ 0. The right side converges to the Riemann
integral that is the right side of (11). The limit of the left is the definition of
the left side of (11).

It is convenient in stochastic calculus to write differential expressions that are
informal versions of more formal integral formulas. The differential expression
related to (11) is

dQX(t) = F 2
t dt . (16)
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Given the definition of quadratic variation, it makes some sense to write the
limit of the left side of (12) as

QX(T ) =
∫ T

0

(dXt)
2
.

Although (16) is already informal, this leads to an even more informal expres-
sion:

(dXt)
2 = F 2

t dt . (17)

This is one of the formulas called Ito’s lemma for general diffusions. It is true
in the sense of our earlier expression for Brownian motion: (dWt)

2 = dt. The
sides are not equal “pointwise”, because the left side is random and the right
side is not. But they they have the same expected value and the statistical
fluctuations become unimportant if you average over any interval of time. The
original formula (11) is the expression of this fact that makes real mathematical
sense, one actual well defined integral being equal to a different actual well
defined integral. In the present case, it is E

[
(dXt)

2
]

= F 2
t dt, which is the

infinitesimal version of (4), and var
[
(dXt)

2
]
∝ dt2, which is the infinitesimal

version of (15).
It is a straightforward if time consuming exercise to show that the quadratic

variation exists and (11) holds (in any of its forms (16) or (17)) even when Gt

is not zero.
If we take (1) seriously in the strong sense, then these facts follow immedi-

ately from corresponding facts in the ordinary Ito calculus. For example,

(dXt)
2 = (Gtdt + FtdWt)

2 = G2
t (dt)2 + 2GtFt(dtdWt) +F 2

t (dWt)
2 = F 2

t dt ,

as (17) (the first two terms are zero because they integrate to zero over any
interval).

4 The stochastic integral with a diffusion

Suppose Ht is a non-anticipating function with respect to the filtration Ft. Then
we can define the stochastic integral with respect to X that generalizes the Ito
integral with respect to Brownian motion. That is, we can define a process

Yt =
∫ T

0

HtdXt . (18)

By now you should be able to define this integral as

YT = lim
∆t→0

∑
tk<T

Htk

(
Xtk+1 −Xtk

)
.

This Yt is a diffusion that satisfies

dYt = Ht dXt = HtGt dt + HtFt dWt .
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The weak interpretation of this is

E[∆Yt | Ft] = HtGt ∆t + o(∆t) ,

E
[
∆Y 2

t | Ft

]
= H2

t F
2
t ∆t + o(∆t) ,

and the fact that Yt is a continuous function of t.

5 Ito’s lemma for a general diffusion

Suppose u(x, t) is a smooth function of x and t. The analogue of Ito’s lemma
for a general diffusion clearly is

du(Xt, t) = ∂xu(Xt, t)dXt + ∂tu(Xt, t)dt +
1
2
∂2

xu(Xt, t) (dXt))2 .

Of course, we should rewrite this using (17):

du(Xt, t) = ∂xu(Xt, t)dXt + ∂tu(Xt, t)dt +
1
2
∂2

xu(Xt, t)F 2
t dt . (19)

We used (17) to go from (dXt)
2 to F 2

t dt. We could instead have used (16) to
write the last term as 1

2∂
2
xu(Xt, t)dQX(t) as many mathematicians prefer. Of

course, (19) really is an informal expression of the formal integral identity

u(XT , T )−u(X0, 0) =
∫ T

0

(
∂tu(Xt, t) +

1
2
∂2

xu(Xt, t)F 2
t

)
dt +

∫ T

0

∂xu(Xt, t) dXt .

Of course, the first integral on the right is an ordinary Riemann integral. The
second integral is the stochastic integral with respect to the diffusion process
Xt.
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