
This section discusses the Ito integral. For this purpose, standard Brownian
motion will be called1 Wt. Recall that this is a Gaussian process with the
independent increments property and continuous sample paths. The standard
Brownian motion, the one we use all the time unless there is some explicit
statement otherwise, has initial position W0 = 0, zero mean, and variance equal
to t: E[Wt] = 0 and E

[
W 2
t

]
= t for all t > 0.

We let Ft be the corresponding filtration. That means that Ft contains
all information about the path Ws for 0 ≤ s ≤ t, or Ft is generated by the
path up to time t, which may be denoted W[0,t]. The increment of Brownian
motion between time t and t′ > t is Wt′ −Wt. The independent increments
property of Brownian motion states that this increment is independent of Ft.
A consequence of independent increments is

E [Wt′ −Wt | Ft] = 0 . (1)

Since Wt′ −Wt is independent of Ft, conditioning on Ft does not change the
expected value, which is zero. The formula (1) makes Brownian motion a mar-
tingale.

Let Xt be another stochastic process that is adapted to the same filtration Ft.
Adapted means that the value of Xt is known if the path W[0,t] is known. There-
fore, if we write Xt = Xt(W ), then there is a function (also called Xt) Xt(W[0,t]).
Stochastic processes with this property also are called progressively measurable,
or non-anticipating. Strictly speaking, these three terms have slightly different
meanings, a difference even most theoretical probabilists pay little attention to.
We say that the process Xt is a martingale if

E [Xt′ | Ft] = Xt . (2)

The formula (1) simply states that Brownian motion is a martingale.
Now let Ft be another random process adapted to the filtration Ft. The Ito

integral is written

Xt =
∫ t

0

Fs dWs . (3)

This defines a stochastic process Xt, which also turns out to be adapted to Ft.
The Ito integral allows us to define stochastic processes with specified properties
in terms of Brownian motion. For example, the solution to a stochastic differ-
ential equation involves an Ito integral. Stochastic differential equations are the
important way to model continuous time dynamical systems subject to random
noise, if the noise is continuous.

There are many adapted functions that come up in applications. A simple
one is Ft = Wt. More complicated is

Ft = max
0≤s≤t

Ws .

1The mathematics of Brownian motion was worked out by Norbert Wiener, so Brownian
motion is also known as the Wiener process.
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Option contracts based on this are lookback options. Another possibility is

Ft =
∫ t

0

Ws ds .

In general, integrating an adapted function (Ito or Riemann integral) gives an-
other adapted function. Options that depends on such integrals are Asian op-
tions. In each case, the value Ft is determined by W[0,t].

The Ito integral (3) is defined as a limit of Ito-Riemann sums much in the
way the Riemann integral is defined using Riemann sums. We define a small
time step, ∆t, and anticipate the limit ∆t → 0. The uniformly spaced discrete
times are tk = k∆t. The approximation to (3) is

X∆t
t =

∑
tk≤t

Ftk
(
Wtk+1 −Wtk

)
. (4)

It is crucial in this definition that the Brownian motion increment ∆Wk =
Wtk+1 −Wtk is in the future of tk. This makes the increment ∆Wk independent
of Ftk . That, in turn, makes X∆t

t into a martingale.
To see this we have to check the martingale property (2) for the process (4).

If t′ > t, then

X∆t
t′ −X∆t

t =
∑

t<tk≤t′
Ftk

(
Wtk+1 −Wtk

)
.

The martingale property asks us to take the conditional expectation, conditioned
on Ft. The terms on the right are easier to understand conditioned on Ftk .
Therefore, we use the tower property, which is predicated on tk ≥ t (which is
true here). Let Yk be the conditional expectation given more information:

Yk = E
[
Ftk

(
Wtk+1 −Wtk

)
| Ftk

]
.

The tower property implies that

E
[
Ftk

(
Wtk+1 −Wtk

)
| Ft

]
= E [Yk | Ft] .

On the other hand, Ftk is known at time tk, so it is a constant in the definition
of Yk. That implies that

Yk = Ftk E
[
Wtk+1 −Wtk | Ftk

]
.

But tk+1 > tk, so the Brownian increment Wtk+1−Wtk is in the future of Ftk and
therefore is independent of Ftk . Therefore (1) implies that E

[
Wtk+1 −Wtk | Ftk

]
=

0 and also that Yk = 0. Putting all these zeros together with the tower property
gives that

E
[
X∆t
t′ −X∆t

t | Ft
]

= 0 ,

which is the martingale property for X∆t
t .
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To summarize, using the forward looking finite difference in (4) has the effect
of making the approximations martingales. For that reason, the Ito integral is
always defined using the forward looking difference. I must ask you to believe
without proof that this makes the limiting process Xt also a martingale. We
will see in examples that using the backward looking finite difference instead
gives a limit that definitely is not a martingale.

The fact that (3) gives a martingale sometimes is called Doob’s theorem or
the Doob martingale theorem. The problem is that there are many important
Doob theorems about martingales, so it is not clear which one “the” Doob
martingale theorem would refer to. There is an interpretation of the martingale
property that is useful in finance and economics. In that interpretation, Wt

represents that value at time t of some asset and the integrand Ft represents a
trading strategy on that asset. At time t you place a “bet” of size Ft on the
future increment Wt+dt − Wt. In the approximation (4), you think of ∆t as
a small trading delay and you place bets at time tk that lasts time ∆t. The
size of this bet is Ftk . It (the betting strategy) can use any information on
the Brownian motion path up to time tk, but nothing beyond. Then Xt, or
X∆t
t represents the total return from that “investment” (i.e. betting) strategy.

Doob’s theorem states that this is a martingale. There is no betting strategy
based on a martingale that returns anything other than another martingale.

The Doob stopping time theorem is a special case of the martingale theorem.
A stopping time is a random time τ ≥ 0 that is determined by the path W so
that you know at time t whether τ ≤ t. That is to say that {τ ≤ t} ∈ Ft. Some
examples are

τ1 = min { t |Wt = 1} ,
τ2 = min { t > τ1 |Wt = 0} .

In both cases, you know at time t whether the event has happened in the time in-
terval [0, t]. An example that is not a stopping time is τ3 = max {t < 3 |Wt ≤ 0}.
Indeed, suppose that you are at time t = 2 and W2 > 0. You do not know at
that time whether or not Wt will return to zero before time 3. Many examples
of stopping times (including those above) are hitting times (the first time a ran-
dom process hits a given set) or first passage times (same definition, but you
might call τ2 a second passage time). You can interpret a stopping time as a
betting strategy. You stay in the game until you hit a specified stopping time.
To stop at time t, you must know at time t whether to stop then.

Suppose τ is a bounded stopping time and we set Ft = 1 if t ≤ τ and
Ft = 0 for t ≥ τ . Bounded means that there is a fixed T with τ ≤ T – the
random stopping time τ does not exceed the deterministic ending time T . If τ
is a stopping time then Ft is an adapted process, because you know at time t
whether Ft = 0 or Ft = 1 (the only possible values). Then (integrate dWs up
to the stopping time) ∫ T

0

Fs dWs =
∫ τ

0

dWs = Wτ .
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The martingale property implies that

E [Wτ ] = 0 . (5)

This is the stopping time theorem. A bounded but non-anticipating stopping
strategy cannot produce positive expected value from a martingale.

There is a paradox related to this called the gambler’s ruin or the Saint
Petersburg problem, or the stopping time paradox. We know W0 = 0. It is a
theorem that the hitting time τ1 above is finite “almost surely”. More precisely,
let M be the event {Xt < 1 for all t > 0}. This is the event informally written
{τ1 =∞}. We will show in some future class that Pr(M) = 0. An event A is
almost sure if Pr(A) = 1, which is the same as saying Pr (not A) = 0. Of course,
E [Wτ1 ] = 1 6= 0. The paradox is that this seems to violate the stopping time
theorem (5). Of course, the stopping time formula was for bounded stopping
times. Not only is τ1 not bounded, but E [τ1] =∞.

To understand the (non) paradox more clearly, look at a “ cutoff” bounded
time τT = min(τ1, T ). If Wt = 1 for some t ≤ T , then WτT

= 1. Otherwise,
WτT

= WT . We will see in some future class that the most likely way to avoid
hitting W = 1 before time T is to go far in the negative direction. Therefore
E [WτT

] = 0 is a combination of the very likely event that WτT
= 1 and the

unlikely event that WτT
is a large negative number. The small probability and

the large negative value lead to the overall expected value zero. Now, suppose
you are a fund manager. You can bet big on WτT

. Most of the time you will
look smart and produce a profit. If you do this strategy year after year, there is
a good chance you will produce a profit year after year. You could even write
an Op/Ed in the Wall Street Journal claiming that the Doob stopping time
theorem is a liberal hoax perpetrated by Paul Krugman and Bill Ayers. But
there is a chance you will lose big. As a fund manager, all that happens to you
is that you get fired. You get to keep your fancy house. The investors lose their
money, and possibly their houses.

Let us return to the Ito integral (3) and compute the limit of (4) in the case
Ft = Wt. That is, we compute

Xt =
∫ t

0

Ws dWs . (6)

But before coming to the right answer, here is the wrong answer. The calcu-
lations are unjustified and the answer is incorrect. Suppose you use ordinary
calculus and suppose Ws is a differentiable function of s Then dWs = dW

ds ds
and, using the chain rule of ordinary calculus,

WsdWs = Ws
dW

ds
ds =

1
2

(
d

ds
W 2
s

)
ds .

Substituting this into (6) gives

Xt =
1
2

∫ t

0

(
d

ds
W 2
s

)
ds =

1
2
W 2
t .
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But we know this formula is wrong because of Doob’s theorem, which implies
E [Xt] = 0, while E

[
1
2W

2
t

]
= 1

2 t 6= 0.
We can get the correct answer for (6) using the approximation formula (4).

Start with the identity a(b−a) = 1
2 (b+a)(b−a) − 1

2 (b−a)(b+a). This implies
that

Wtk

(
Wtk+1 −Wtk

)
=

1
2
(
Wtk+1 +Wtk

) (
Wtk+1 −Wtk

)
− 1

2
(
Wtk+1 −Wtk

)2
=

1
2

(
W 2
tk+1
−W 2

tk

)
− 1

2
(
Wtk+1 −Wtk

)2
.

Of course, then

X∆t
t =

∑
tk≤t

Wtk

(
Wtk+1 −Wtk

)

=

 1
2

∑
tk≤t

(
W 2
tk+1
−W 2

tk

)  −
 1

2

∑
tk≤t

(
Wtk+1 −Wtk

)2  .

The first sum on the right is a telescoping sum, which means it has the form
(a − b) + (b − c) + · · · + (y − z) = a − z. The long sum collapses to just a − z
like the collapsable telescopes sailors used to use. Let n∗(t) = min {k | tk > t}.
Then (recall again that W0 = 0)∑

tk≤t

(
W 2
tk+1
−W 2

tk

)
= W 2

tn∗(t)
.

But tn∗(t) → t as ∆t → 0, so W 2
tn∗(t)

→ W 2
t (Wt is a continuous function of t).

Therefore, the first sum has the limit

lim
∆t→0

 1
2

∑
tk≤t

(
W 2
tk+1
−W 2

tk

)  =
1
2
W 2
t .

This is the incorrect answer we got using ordinary calculus. It must be that the
second sum has a non-zero limit as ∆t→ 0, and one that restores the martingale
property.

The second sum is the sum of a large number of independent (by the in-
dependent increments property) random variables. A typical term is Yk =(
Wtk+1 −Wtk

)2, with E [Yk] = tk+1 − tk = ∆t, and2 var [Yk] = 2∆t2. The
number of terms in the sum is n∗(t) as before. Therefore

E

∑
tk≤t

(
Wtk+1 −Wtk

)2  = n∗(t)∆t = tn∗(t) .

2If V is a Gaussian random variable with expected value zero and variance σ2, then

var
[
V 2
]

= E
[
V 4
]
− E

[
V 2
]2

= 3σ4 − σ4 = 2σ4. Apply this to the increment V =
Wtk+1 −Wtk .
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As before, tn∗(t) → t as ∆t→ 0. Moreover, the variance of the sum is the sum
of the variances of the terms, so

var

∑
tk≤t

(
Wtk+1 −Wtk

)2  = 2n∗(t)∆t2 = 2tn∗(t)∆t→ 0 as ∆t→ 0.

The variance going to zero and the expected value having a limit does not prove
completely that the sum has a finite limit. But it almost does, particularly if
you take the rapidly decreasing sequence ∆t = 1

2 ,
1
4 , . . . rather than allowing,

say, ∆t = 1
2 ,

1
3 ,

1
4 ,

1
5 , etc. We will come back to this point in a future class. For

now, please accept the claim that the limit is what it seems to be.
Putting these results together gives the final result

Xt =
∫ t

0

Ws dWs = lim
∆t→0

X∆t
t = 1

2W
2
t − 1

2 t . (7)

Let us check that this is a martingale. That means checking that E [X ′t | Ft] =
Xt if t′ > t. For this, write

Xt′ = 1
2 [(Wt′ −Wt) +Wt]

2 − 1
2 [(t′ − t) + t] .

Take the conditional expectation, multiply out the square, and use the properties
of Brownian motion:

E[Xt′ | Ft] = 1
2E
[
(Wt′ −Wt)

2 | Ft
]

+ E[Wt′ −Wt | Ft]Wt + 1
2W

2
t

− 1
2 (t′ − t) − 1

2 t

= 1
2W

2
t − 1

2 t

= Xt .

In the top line we pulled Wt out of the conditional expectation because Wt

is known in Ft. Also, E[Wt′ −Wt | Ft] = 0 by the independent increments
property. The correct formula for the Ito does indeed give a martingale as Doob
says is should.

The relation (3) may be written informally as

dXt = Ft dWt .

More generally, the formula

dXt = Ft dWt + Gt dt (8)

means that

Xt = X0 +
∫ t

0

Fs dWs +
∫ t

0

Gs ds . (9)

In that expression, the first integral on the right is an Ito integral while the sec-
ond is a Riemann integral. The integrand Gs may be random, but the Riemann
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integral is defined even for random functions, as long as they are continuous.
The expression (8) is called the Ito differential. It is used in modeling random
processes. For example, the formula

dXt = a(Xt) dt + b(Xt) dWt (10)

is an Ito stochastic differential equation. The integral expression (9) gives it a
precise mathematical meaning, once we have defined the Ito integral.

The theorem called Ito’s lemma tells us how to calculate the Ito differential
of functions of Brownian motion. Suppose u(w, t) is a sufficiently differentiable
function of its arguments. In particular, suppose ∂wu, ∂2

wu and ∂tu make sense
(are continuous, possible differentiable themselves, ...). Then Xt = u(Wt, t) is
an adapted stochastic process. Ito’s lemma is the formula

d u(Wt, t) = ∂wu(Wt, t) dWt + ∂tu(Wt, t) dt + 1
2∂

2
wu(Wt, t) dt . (11)

The first two terms on the right are the chain rule from ordinary calculus. The
last term is new to the Ito stochastic calculus. We will prove (sort of) Ito’s
lemma next class. What we actually prove is the integral version

u(Wt, t) − u(0, 0) =
∫ t

0

∂wu dWs +
∫ t

0

(
∂tu + 1

2∂
2
wu
)
ds . (12)

Let us check Ito’s lemma using the function u(w, t) = 1
2w

2 − 1
2 t. This has

∂wu = w, ∂2
wu = 1, and ∂tu = −1. Ito’s lemma (11) then gives

d
(

1
2W

2
t − 1

2 t
)

= Wt dWt − 1
2dt + 1

2dt = Wt dWt .

The integral version (12) becomes in this example

1
2W

2
t − 1

2 t =
∫ t

0

Ws dWs .

This example shows that Ito’s lemma can play the role of the fundamental
theorem of calculus. In ordinary calculus you try not to evaluate integrals by
taking the limits of Riemann sums. Instead you use the fundamental theorem
of calculus and look for a function whose derivative is the integrand. Ordinary
calculus would not be much use to ordinary people without theorems like the
fundamental theorem. In stochastic calculus, you look for a function u(w, t) so
that du, as given by (11) is the integrand.

Another important fact about the Ito integral is the Ito isometry formula:

E

[(∫ t

0

Fs dWs

)2
]

=
∫ t

0

E
[
F 2
s

]
ds . (13)

The left side is the variance of the random variable that is the Ito integral. On
the right is a Riemann integral of a function that is not random, g(s) = E

[
F 2
s

]
.

The isometry formula makes it possible to calculate or estimate the variance of

7



an Ito integral. Recall that the expected value is zero (Doob’s theorem). Since
a general Ito integral is not Gaussian (Our example gave (W 2

t − t)/2, which is
not Gaussian.), the mean and variance do not determine it completely. Still, it
is useful information.

Let us verify (13) in our example of
∫ t

0
Ws dWs. On the left we have3

E
[{

1
2

(
W 2
t − t

)}2
]

= 1
4E
[
W 4
t

]
− 1

2 tE
[
W 2
t

]
+ 1

4 t
2

= 1
43t2 − 1

2 t · t+ 1
4 t

2

= 1
2 t

2 .

On the right we have to integrate E
[
F 2
s

]
= E

[
W 2
s

]
= s. The result is∫ t

0

s ds = 1
2 t

2 .

Thus, the left and right sides of (13) agree in this example.

3Memorize the formula E
[
Y 4
]

= 3σ4
Y for a mean zero Gaussian Y .
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