
We start with some technical details regarding the Ito integral and Ito’s
lemma. Then we do the whole thing over for general diffusion processes (def-
inition below). The things we use about Brownian motion Wt to define and
understand the Ito integral mostly carry over to general diffusions using more
or less the same reasoning.

We return to the Ito integral with respect to Brownian motion

Xt =
∫ t

0

Fs dWs . (1)

We assume, possibly without remembering to state every time, that Ft is mea-
surable with respect to Ft. Recall the notation for the approximation: ∆t is
a small time step, tk = k∆t, and the approximation of (1) is the Ito-Riemann
sum

X∆t
t =

∑
tk<t

Ftk

(
Wtk+1 −Wtk

)
. (2)

As a reminder, it is crucial here that ∆W = Wtk+1 = Wtk
is in the future of Ftk

where Ftk
is defined. At time tk, the value Ftk

is completely know (i.e. known
exactly with no random error) but ∆W is completely unknown (i.e. independent
of the information we have so far).

We want to understand the convergence as ∆t→ 0 of the approximation (2).
For the purpose of defining the Ito integral (1) it suffices to consider a specific
sequence ∆tn → 0 as n → ∞. The question of convergence for values of ∆t
not in this sequence need not be addressed and is harder. I use the sequence is
∆tn = 2−n. For convenience, I simplify the notation to Xn

t = X2−n

t . The rapid
convergence of ∆tn to zero makes it hard for certain fluctuations to mess up
the convergence of Xn

t . The specific choice makes ∆tn+1 = 1
2∆tn and makes it

easy to compare Xn+1 to Xn.
The convergence proof establishes that the limit exists by showing that the

differences Y n = Xn+1 − Xn converge to zero fast enough. The specific ar-
gument is a version of the Borel Cantelli lemma as it usually is applied in
probability, but with two aspects of it combined. Any appropriate probability
book will have the original Borel Cantelli argument that is not being followed
here.

The proof uses the phrase almost surely. This does not mean that non-
convergence does not exist, only that it cannot happen. More precisely, there
are outcomes in which limn→∞Xn does not exist, but if A is the event consisting
of all these outcomes, then Pr(A) = 0. You can repeat an experiment as often
as you want. If you understand the situation correctly, an event of probability
zero will never happen. The event A may not be empty, but almost surely,
ω /∈ A.

One can show that event A has probability zero by finding a random variable
S so that S ≥ 0 and E[S] < ∞ and A = {S =∞}. We have Xm = X1 +∑m−1

n=1 Y
n. Therefore

lim
m→∞

Xm = X0 + lim
m→∞

m∑
n=1

Y n .
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The limit on the left exists if the sum on the right exists. The limit on the right
is, by definition of infinite sums,

lim
m→∞

m∑
n=1

Y n =
∞∑

n=1

Y n .

Now recall1 that the infinite sum on the right exists if the sum is absolutely
convergent. This means that

S =
∞∑

n=1

|Y n| <∞ .

We are going to establish this by showing that E [S] < ∞. What we have to
show is

E [S] =
∞∑

n=0

E
[ ∣∣Xn+1

t −Xn
t

∣∣ ] < ∞ .

In fact, we will do a calculation that shows that

E
[ ∣∣Xn+1

t −Xn
t

∣∣ ] < Cαn , (3)

with a positive α < 1.
Evaluating E[|Y |] by a calculation may be harder than evaluating E

[
Y 2
]
.

Fortunately, the Cauchy Schwarz inequality implies that

E[|Y |] ≤
(
E
[
Y 2
])1/2

. (4)

This follows from the usual Cauchy Schwarz inequality, which states that if X
and Y are any pair of random variables, then

E [|XY |] ≤
(
E
[
X2
]
E
[
Y 2
])1/2

. (5)

If you don’t “remember” this but you have a training in probability, you prob-
ably know that the correlation coefficient cannot be larger than one. That is, if
U and V are two random variables, then cov(U, V ) ≤ (var(U)var(V ))1/2. The
proof of this is to take X = U − µU and Y = V − µV and apply (5). You
can get (4) from (5) by the well known (to those who know it well) trick of
taking X = 1 in (5). If all this isn’t enough proof, you can make a proof in
discrete probability by minimizing

∑
ykp

2
k with the constraint that

∑
ykpk is

fixed. Here the numbers yk are the possible values of Y , which we may assume
are non-negative, and pk are the corresponding probabilities. The method of
Lagrange multipliers gives the optimality condition as ykpk = λpk for some La-
grange multiplier λ. This implies that the yk are equal, which makes the two
sides of (4) equal. Otherwise, the right side is strictly larger than the left.

1If you have not taken a class on mathematical analysis that covered this fact, you can
look it up or accept it as very plausible.
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The calculation will show that

E
[(
Xn+1 −Xn

)2] ≤ Cβn , (6)

where β is a non-negative constant and β < 1. This gives

E
[∣∣Xn+1 −Xn

∣∣] ≤ √
Cβn = C

(√
β
)n

.

Note that C in the middle is different from C on the right. It is a common
convention in proofs like this that C just means “some constant”, which can
be different from place to place. This proves the desired inequality (3), with
α =
√
β. Of course, if β < 1 then

√
β < 1 as well.

After this buildup, we finally come to the business of comparing Xn to X2n.
I use the following more or less standard notations: tk = k∆t is generalized to
tk+1/2 = (k + 1

2 )∆t, time subscripts are abbreviated, as Fk = Ftk
, Wk+1/2 =

Wtk+1/2 = Wtk+∆t/2, etc. One piece of the sum (2) is Fk(Wk+1 −Wk). This
piece comes from the time interval [tk, tk+1]. The corresponding sum for X2n

has this broken into two equal sub-intervals. The corresponding terms in the
sum are Fk(Wk+1/2 −Wk) + Fk+1/2(Wk+1 −Wk+1/2). Subtracting gives[
Fk(Wk+1/2 −Wk) + Fk+1/2(Wk+1 −Wk+1/2)

]
−
[
Fk(Wk+1 −Wk)

]
= (Fk+1/2 − Fk)(Wk+1 −Wk+1/2) .

Summing over tk gives (except for a possible extra term (which I ignore and
which does not change the final result (6), and see explanations below)

E
[(
X2n

t −Xn
t

)2]
=

∑
tk<t

E
[
(Fk+1/2 − Fk)2(Wk+1 −Wk+1/2)2

]
=

∑
tk<t

E
[
(Fk+1/2 − Fk)2

]
E
[
(Wk+1 −Wk+1/2)2

]
E
[(
X2n

t −Xn
t

)2]
= 1

2∆t
∑
tk<t

E
[
(Fk+1/2 − Fk)2

]
. (7)

Explanations:

• The top sum on the right is a single sum over k because the cross terms
E
[
(Fj+1/2 − Fj)(Wj+1 −Wj+1/2)(Fk+1/2 − Fk)(Wk+1 −Wk+1/2)

]
are zero

if j 6= k. This is because one of the two terms ∆Wj or ∆Wk is in the future
of all other terms and therefore independent of them.

• The middle line follows from the top line because the ∆W interval, [tk+1, tk+1/2],
is in the future of both Fk and Fk+1/2. Therefore, the ∆W 2 factor is in-
dependent of the ∆F factor.

• The bottom line uses the Brownian motion formula E
[
(Wk+1 −Wk+1/2)2

]
=

(tk+1, tk+1/2).
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Unfortunately, some fudging starts now. We need to concoct a reason for
the terms E

[
(Fk+1/2 − Fk)2

]
to go to zero as ∆t→ 0. If they do not, the overall

sum might be
C ·∆t · (number of terms) = Ct ,

which does not go to zero with ∆t. I propose the following regularity hypothesis
on Ft:

|Ft′ − Ft| ≤ C [ |Wt′ −Wt| + |t′ − t| ] .

This is motivated by thinking of F as a function of Wt and t, as it is in many
applications of the Ito integral. This implies the simple bound

E
[
(Fk+1/2 − Fk)2

]
≤ C∆t . (8)

I proceed now assuming that F satisfies this bound. I will give a few comments
later (in a later class?) about what to do if this bound does not hold.

Assuming (8), we get from (7)

E
[(
X2n

t −Xn
t

)2] ≤ C∆t2 · (number of terms) = C∆t · t = Ct

(
1
2

)n
.

But this is an estimate of the form (6), which was the last thing needed to finish
the proof.

We next come to the important properties of the Ito integral. Two of the
most basic properties are the Ito isometry formula and the part of Ito’s lemma
informally written as (dWt)2 = dt. These have the same source, which is that
E
[
(∆W )2

]
= ∆t, and that fluctuations from this expectation value cancel out

in the manner of the law of large numbers. This cancellation is the key, in view
of the fact that

E
[ ∣∣∆W 2 −∆t

∣∣ ] ≥ ∆t .

The deviations of (∆W )2 from ∆t are not small relative to ∆t. But they cancel
each other enough to ignore them because their expected value is zero.

The formula (dWt)2 = dt is true not in the pointwise sense that the numbers
are equal for each t. Instead, integrals of them,.

Ut =
∫ t

0

F 2
s ds ,

Vt =
∫ t

0

F 2
s (dWs)2

,

are equal. More precisely, we give definitions of Ut and Vt as limits and do a
calculation that shows the limits are the same. The natural approximations are

Un
t =

∑
tk<t

F 2
k ∆t

V n
t =

∑
tk<t

F 2
k (Wk+1 −Wk)2

.
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Arguments like the one above for the Ito integral show that the limits

lim
n→∞

Un
t = Ut

lim
n→∞

V n
t = Vt

 (9)

exist (the left sides are the definitions of the right sides). The question is: are
they the same?

If they are the same, it is the result of cancellation. Computing the expected
square is a great way to find cancelation. If

E
[
(Un

t − V n
t )2

]
→ 0 as n→∞,

then2 Ut = Vt. The difference is

V n
t − Un

t = Rn
t =

∑
tk<t

F 2
k

[
(Wk+1 −Wk)2 − ∆t

]
.

The usual three facts lead to the cancelation: (i) the term in square brackets [· · ·]
has mean value zero, (ii) it is independent of the random factor that multiplies
it (F 2

k ), (iii) cross terms have expected value zero (one of them is in the future).
Therefore we calculate (we did similar calculations before)

E

[{
(Wk+1 −Wk)2 − ∆t

}2
]

= 2∆t2 ,

and use this to get

E[Rn
t ] = 2∆t

(∑
tk<t

E
[
F 4

k

]
∆t

)
.

But this is ∆t multiplied by an approximation to a Riemann integral
∫ t

0
F 4

s ds,
so it goes to zero with ∆t. This, at last, shows that Ut = Vt. This is the sense
in which (dWt)2 = dt.

This calculation is the main step in one approach to Ito’s lemma. Recall
the point of the lemma is to define du(Wt, t), where u(w, t) is a differentiable
function (up to second or third partial derivatives). The definition of du should
have the property that

u(Wt, t) = u(W0, 0) +
∫ t

0

du(Ws, s) . (10)

2Hopefully this is plausible. A mathematical proof, for those who know the relevant mea-
sure theory, is E[(Ut − Vt)2] ≤ lim infn→∞ E[(Un

t − V n
t )2] (Fatou’s lemma), under the hy-

pothesis that Un
t → Ut and V n

t → Vt almost surely. If the right side goes to zero, then the
left side must be zero and Ut = Vt almost surely.
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The Ito’s lemma formula uses the partial derivatives ∂wu(w, t), ∂2
w(w, t), and

∂tu(w, t):

du(Wt, t) = ∂wu(Wt, t)dWt + ∂tu(Wt, t)dt + 1
2∂

2
wu(Wt, t)dt . (11)

The actual meaning of this formula comes from (10):

u(Wt, t)−u(0, 0) =
∫ t

0

[ ∂wu(Ws, s) ] dWs +
∫ t

0

[
∂tu(Ws, s) + 1

2∂
2
wu(Ws, s)

]
ds .

(12)
When we prove Ito’s lemma, this is integral formula is what prove.

We start the proof with the least interesting and most technical part of it,
remainders in Taylor series. Suppose f(x) has bounded derivatives up to order 3,
then f(x+∆x)−f(x) = f ′(x)∆x+ 1

2f
′′(x)∆x2 +R, where R is the remainder of

the series. It satisfies (find a good calculus book) |R| ≤ 1
6 max |f ′′′| |∆x|3. There

is a clever approach to multi-variable Taylor series that uses this one variable
theorem and the chain rule. We have ∆u = u(w + ∆w, t+ ∆t)− u(w, t). Now
(this is the trick) define f(x) = u(w + x∆w, t+ x∆t)− u(w, t). This f satisfies
f(0) = 0, and f(1) = ∆u. We will apply the one variable theorem above with
∆x = 1. The chain rule gives (leaving out arguments for simplicity)

f ′ = ∂wu∆w + ∂tu∆t
f ′′ = ∂2

wu (∆w)2 + 2∂w∂tu (∆w∆t) + ∂2
t u (∆t)2

f ′′′ = ∂3
wu (∆w)3 + 3∂2

w∂tu
(
∆w2∆t

)
+ 3∂w∂

2
t u
(
∆w∆t2

)
+ ∂3

t u (∆t)3
.

For Ito’s lemma, we need both terms in f ′ and only the first term of f ′′. Note
that if |∆w| < 1 and ∆t < 1 (∆t is positive but ∆w could be positive or
negative), then ∆w2∆t < |∆w|∆t and ∆t3 < ∆t2. Therefore, if all the partial
derivatives on the right are bounded, we conclude that∣∣∆u − (∂wu∆w + ∂tu∆t + 1

2∂
2
wu
)∣∣ ≤ C

(
|∆w|3 + |∆w|∆t + ∆t2

)
.

The term in parentheses on the left is the Taylor series approximation needed
for Ito’s lemma. The quantity on the right is the remainder bound for this
approximation.

A new thing in stochastic calculus is that we take the Taylor series approx-
imation

u(Wk+1, tk+1)−u(Wk, tk) ≈ ∂wu(Wk, tk)∆Wk + ∂tu(Wk, tk)∆t+ 1
2∂

2
wu(Wk, tk)∆W 2

k .

We use both first derivative terms but only one of the three second derivative
terms. This is because we need an approximation whose error is an order of
magnitude smaller than ∆t. The overall error in making an error at each time
step is the sum of all the individual errors. If the individual errors are on the
order of ∆t, then their sum does not go to zero as ∆t → 0. If the individual
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terms go to zero faster than ∆t, then even their sum goes to zero with ∆t.
We have seen that E[∆W 2] = ∆t. This implies that typical ∆W values have
|∆W | = O(∆t1/2). Squaring this gives

∣∣∆W 2
∣∣ = O(∆t), which we knew. Going

further,
∣∣∆W 3

∣∣ = O(∆t3/2) and |∆W∆t| = O(∆t3/2). Adding them up, we
expect that ∑

tk<t

∣∣∆W 3
k

∣∣ ≤ C
∑
tk≤t

∆t1/2∆t ≤ ∆t1/2 Ct .

Adding up the individual errors from each time step gives a total error on the
order of ∆t1/2 which tends to zero as ∆t→ 0.

It is time to assemble the pieces. We have

u(Wt, t) − W (0, 0) =
∑
tk<t

∆uk + ∆u∗ ,

where
∆uk = u(Wk+1, tk+1)− u(Wk, tk) ,

and
∆u∗ = u(Wt, t)− u(Wn∗(t), tn∗(t)) .

The last term is the difference in u values between the actual t and the largest
tk < t. You may just ignore it in the first reading. Using the Taylor expansions
above and adding them up gives

u(Wt, t) − W (0, 0) =
∑
tk<t

(∂wu(Wk, tk)) ∆Wk

+
∑
tk<t

(∂tu(Wk, tk)) ∆t

+
1
2

∑
tk<t

(
∂2

wu(Wk, tk)
)

∆W 2
k

+
∑
tk<t

Rk .

Here Rk is the remainder in the Taylor approximation. The first sum on the
right converges to the Ito integral. The second sum converges to the Riemann
integral. The third sum also converges to the Riemann integral, as we showed
a few pages ago. The expected value of the last term is

E

[∑
tk<t

Rk

]
≤ C

∑
tk<t

E [|∆Wk|] ∆t + C
∑
tk<t

E
[
|∆Wk|3/2

]
≤ C∆t1/2

∑
tk<t

∆t = Ct

√
∆t .

This is the proof of Ito’s lemma.
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The Ito isometry formula is based on similar ideas but simpler calculations.
It says that if Xt is the Ito integral (1), then

E
[
X2

t

]
=
∫ t

0

E
[
F 2

s

]
ds . (13)

The proof is a calculation using the definition (2).

E
[(
X∆t

t

)2]
=
∑
tk<t

E
[
F 2

tk

(
Wtk+1 −Wtk

)2]
.

We use the tower property to evaluate the terms on the right. The tower
property tells us that if U is any random variable, then

E[E[U | Fk ] ] = E [U ] .

We assumed that Ftk
is known at time tk, so given the information in Ftk

, Ftk

is a known constant. Therefore

E
[
F 2

tk

(
Wtk+1 −Wtk

)2] = E
[
E
[
F 2

tk

(
Wtk+1 −Wtk

)2 | Ftk

]]
= E

[
F 2

tk
E
[(
Wtk+1 −Wtk

)2 | Ftk

]]
= ∆t E

[
F 2

tk

]
.

We use this calculation to get

E
[(
X∆t

t

)2]
=
∑
tk<t

E
[
F 2

tk

]
∆t ,

which converges to the right side of (13) as ∆t→ 0.
One application of the isometry formula (13) is to the understanding of

stochastic integrals for small t. If the integrand Ft is a continuous function of
t, the approximation is∫ t

0

Fs dWs ≈
∫ t

0

F0 dWs = F0Wt .

This means that for small t, Xt is approximately a Gaussian (because Wt is
Gaussian) with mean zero and variance F 2

0 t (because F0 is known at time zero
(i.e. now) so it is a constant, and Wt has variance t. You might be uneasy with
this admittedly vague argument, partly because Ft is random and you don’t
know how far Ft might be from F0. A more solid if less intuitive argument
would be to assume that v(t) = E

[
F 2

t

]
is a differentiable function of t, so

|v(t)− v(0)| ≤ Ct. Then

E
[
X2

t

]
=
∫ t

0

v(s) ds ≈ v(0)
∫ t

0

ds ,
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with a more concrete error bound∣∣∣∣∫ t

0

(v(s)− v(0)) ds
∣∣∣∣ ≤ ∫ t

0

|v(s)− v(0)| ds ≤ C

∫ t

0

s ds = Ct2 .

At the end I indulged in the mathematicians’ habit of taking C to mean “just
some constant” without implying that two instances of C have the same value.
Yes, one of the C values above is twice the other, but nevermind. This reasoning
shows that

E
[
X2

t

]
= F 2

0 t + O
(
t2
)
. (14)

Let us pause here to explain the big O notation. Suppose f(t) is some
function defined for small t and g(t) is another function with g(t) > 0 for t > 0.
We say f(t) = O(g(t)) if there is a constant C so that |f(t)| ≤ Cg(t) for all
sufficiently small t. Sufficiently small means that there is a positive t0 so that if
t is in the range 0 < t ≤ t0, then |f(t)| ≤ Cg(t). This mathematical definition
may have more or less practical significance depending on how big C might be
or how small t0 might be. You might see (indeed, have seen in (14)) this used
in the sense that f(t) = h(t) + O(g(t)) implies that |f(t)− h(t)| ≤ Cg(t) for
all t ∈ (0, t0). The big O notation often is used combined with powers of t.
Powers of t are the mathematician’s version of orders of magnitude in science.
Where an order of magnitude is a power if ten (roughly) for a scientist, it is
a power of t to a mathematician. The formula (14) states that the difference
between E

[
X2

t

]
and v(0)t is on the order of t2, which is an order of magnitude

smaller than the order of v(0)t (assuming v(0) 6= 0). It says that the error in
the approximation E

[
X2

t

]
≈ v(0)t is an order of magnitude smaller than the

quantity being approximated.
Coming back to (14), this tells us that, for small t, typical values of |Xt| are

on the order of
√
t, because typical values of X2

t are on the order of t. Now
suppose

Xt =
∫ t

0

Fs dWs +
∫ t

0

Gs ds .

Then typical values of the first integral on the right are on the order of t1/2 and
typical values of the second integral are on the order of t (it’s just a Riemann
integral). Therefore the Ito integral typically is an order of magnitude larger
than the Riemann integral. In particular

E
[
X2

t

]
≈ F 2

0 t .

Of course, the expected value of the Ito integral is zero, so

E[Xt] ≈ G0t .
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