
1 More on the probability flux

2 Properties of solutions of the forward and back-
ward equations

3 Probability reweighting

Suppose you are interested in a particular probability measure P on a probability
space Ω. Expected values are integrals with respect to the measure P

AP = E[V ] =
∫

Ω

V (ω) dP (ω) .

Even of you are interested in AP , there may be reason to take expectations
with respect to a different probability measure Q. In order to do this, Q must
be absolutely continuous with respect to P (definition below) and you have to
know the likelihood ratio between P and Q. In that case

AP = EQ[V L] =
∫

Ω

V (ω)L(ω) dQ(ω) .

You get the answer AP either by averaging in the “P measure” or by averaging
in the “Q measure” and including the likelihood ratio.

Consider the finite dimensional case with probability densities. The prob-
ability space is Ω = Rn. The probability measures are dP (x) = f(x)dx and
dQ(x) = g(x)dx, where f and g are ordinary probability densities. Then

AP =
∫

Rn

V (x) f(x)dx =
∫

Rn

V (x)
f(x)
g(x)

g(x)dx =
∫

Rn

V (x)L(x) g(x)dx

This may be re-expressed as

Ef [V (X)] = Eg[V (X)L(X)] where L(x) =
f(x)
g(x)

.

The ratio that defines L is called the likelihood ratio because the same ratio
appears in the likelihood ratio test in statistics. Statisticians prefer to call
probabilities and probability densities “likelihoods” in certain circumstances.
Reweighting comes from the point of view that the probability density g is
reweighted to become f . The reweighting function is the likelihood ratio, L.

One application of reweighting is the Monte Carlo technique of importance
sampling. Suppose, for example, A = Pr(X > k), where X is a standard normal.
This is quite small if k is large, but how small is it? The direct Monte Carlo
method to estimate A would be to generate N independent Xi ∼ N (0, 1) and
use

A ≈ 1
N
·# {Xi > k} .
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Each Xi with Xi > k is a hit. For large enough N , the number of hits is
approximately N ·A. But if A = 10−3 (say), then only one in a thousand of the
Xi will be hits. The rest are wasted.

Reweighting gives a more accurate estimate of A for the same number of
samples. Suppose k is large. If you want to generate hits, you can sample a
normal with mean k rather than mean zero. This will give about 50% hits. The
two probability densities and the likelihood ratio are

f(x) =
1√
2π
e−x

2/2 , g(x) =
1√
2π
e−(x−k)2/2 , L(x) = e−kx+k2/2 .

For x > k, L(x) < e−k
2/2, which is small. The Monte Carlo method with

reweighting is to generate Xi ∼ N (k, 1) and take

A ≈ 1
N

∑
Zi>k

L(Xi) =
1
N

∑
Zi>k

e−kXi+k
2/2 .

The estimator with reweighting (importance sampling) is more accurate because
it estimates the tiny probability A as the average of N tiny numbers L(Xi),
with a large number of hits, rather than by counting very rare hits with each
hit carrying weight 1, which is much larger. The reweighting method is called
importance sampling because it tries to sample those parts of probability space
that are important for determining the answer. In this case, that is x > k, but
not too much larger.

In financial math, reweighting may be called “changing worlds”, or changing
numeraire. The picture is that in one world, A = Ef [V (X)]. In a different world,
A = Eg[V (X)L(X)]. The number A is the same in both worlds, but the story
behind A is different.

4 Absolute continuity

You might get the impression that you can re-weight any probability density
to get any other one. But there are limits to this. For example, suppose X
is positive in the f world and negative in the g world. You cannot reweight a
positive number to become negative. More technically, suppose f(x) = 0 for
x < 0 and g(x) = 0 for x > 0, then the supposed likelihood ratio is either
infinite (if g is zero) or zero (if f is zero). The crucial formula f(x) = L(x)g(x)
is simply not true.

The general definition with respect to this issue is the following. Probability
measure P is absolutely continuous with respect to probability measure Q if
there is a function L(ω) so that Ep[V (ω)] = EQ[V (ω)L(ω)] for more or less
(OK, this is not the precise definition) any function V . The function L may be
called the Radon Nikodym derivative because of the very informal manipulations

EP [V ] =
∫
V (ω)dP (ω) =

∫
V (ω)

dP (ω)
dQ(ω)

dQ(ω) =
∫
V (ω)L(ω) dQ(ω) ,
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if you make the informal identification L as the quotient

L(ω) =
dP (ω)
dQ(ω)

.

Of course, the quotient on the right may be hard to define rigorously.
If probability measures P and Q are given by probability densities in Rn

it is obvious whether P is absolutely continuous with respect to Q. The only
thing that can prevent this is g(x) = 0 in a region where f(x) > 0. Otherwise
L = g

f works. Something like this turns out to be true for any pair of probability
measures on the same probability space Ω. Suppose that for any event A ⊂ Ω,

Q(A) = PrQ(A) = 0 =⇒ P (A) = PrP (A) = 0 .

Then P is absolutely continuous with respect to Q and there is a reweighting
function L that turns Q into P . In the finite dimensional example, let A be the
event A = {x | f(x) > 0 and g(x) = 0}. Since g(x) = 0 in A, it is clear that

PrQ(A) =
∫
A

g(x)dx = 0 .

If
PrP (A) =

∫
A

f(x)dx > 0 ,

then there cannot be an L(x) that turns g into f . You can find the proof
of this theorem, called the Radon Nikodym theorem, in any good book that
covers measure theory. I learned it from Walter Rudin’s book Real and Complex
Analysis.

Consider the probability densities g(x) for the standard normal in one di-
mension and f(x) for the rate one exponential. That is g(x) = 1√

2π
e−x

2/2 and
f(x) = 0 if x < 0 and f(x) = e−x if x > 0. Then f is absolutely continuous
with respect to g because there are no x values where g vanishes. But g is not
absolutely continuous with respect to f because f = 0 when x < 0. We say that
probability measures P and Q are equivalent if P is absolutely continuous with
respect to Q and Q is absolutely continuous with respect to P . The term is
slightly unfortunate because the measures P and Q may give different answers
to many questions: EP [V ] 6= EQ[V ].

In the example above – g is gaussian and f is exponential – there is some
“overlap” between f and g even though g is not absolutely continuous with
respect to f . A more extreme case for probability measures P and Q is that
there is some event A so that PrP (A) = 1 and PrQ(A) = 0. In this case,
where there is absolutely no overlap between P and Q, the measures are called
completely singular with respect to each other. Although there are obviously
exceptions, as a general rule you should expect that if measures P and Q are
not equivalent (each absolutely continuous with respect to the other) then they
are completely singular with respect to each other.

You can look at this stuff from a statistician’s point of view. Suppose you
have an ω ∈ Ω and you want to decide whether ω is a sample of P or Q. Usually
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the goal is not to be right all the time, but to maximize the probability of being
right. For example, suppose Ω = R, P = N (−1, 1) and Q = N (1, 1). It would
make sense to guess P if X < 0 and Q if X > 0. More generally, if P and Q
are equivalent and L = dP

dQ , then we could guess P if L(ω) > l0 and guess Q if
L(ω) < l0. This is what statisticians call the likelihood ratio test. The Neyman
Pearson lemma of statistics says that tests of this kind are essentially optimal.

If P and Q are completely singular with respect to each other, then this test
is easy. If ω ∈ A you say P , otherwise Q. This will always be correct. That is,
if ω ∼ P , then ω ∈ A almost surely, and if ω ∼ Q, then ω /∈ A almost surely.
So if you want to tell P samples from Q samples, you might look for properties
of P and Q samples that hold almost surely, and are different.

A prime example of this is the “only if” part of Girsanov’s theorem. This says
that it is impossible to change the infinitesimal covariance of an SDE solution
by reweighting. Suppose you have two SDE processes

dXt = a(Xt)dt + b(Xt)dWt (1)

and
dXt = f(Xt)dt + g(Xt)dWt . (2)

Both of these SDEs induce measures on the path space of continuous functions
defined up to some time T : Ω = C[0, T ]. Let us suppose the a, b process (1)
defines P and the f, g process (2) defines Q. The infinitesimal covariance is the
C(x) in the familiar formula (in the usual notation ∆X = Xt+∆t −Xt)

E
[
∆X∆Xt | Ft

]
= C(Xt)∆t + o(∆t) .

We saw that for (1) the infinitesimal covariance is CP (x) = b(x)bt(x), and for
(2) it is CQ(x) = g(x)gt(x). We also studied the quadratic variation of an SDE
solution and showed that, almost surely,

lim
∆t→0

∑
tk<T

(
Xtk+1 −Xtk

) (
Xtk+1 −Xtk

)t =
∫ T

0

C(Xt) dt . (3)

For this sample space, a random outcome, ω, is the sample path from time 0
to time T , which is ω = X[0,T ]. The formula (3) states that the infinitesimal
covariance is a function of ω. Therefore if measures P and Q have CP (x) 6=
CQ(x) then you should be able to tell a P path from a Q path all the time.

The previous paragraph has some careful vague wording. The formula (3) is
trying to say that if CP (x) 6= CQ(x) then P and Q are completely singular. But
it does not quite do that because it is possible, for example, that CP (x) = CQ(x)
when x < 2 (in one dimension) but not otherwise. In that contrived situation,
telling P from Q would depend on the path. If the path ever crosses x = 2
you can tell, but there is a positive probability for that not to happen. A more
typical example would be telling one diffusion coefficient from another. You can
always tell b = 1 from g = 2 for example (if they are constant), or b = 1 from
g(x) = σx (geometric Brownian motion).
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5 Girsanov’s theorem

The main part of Girsanov’s theorem says that you can change one drift coeffi-
cient to another by re-weighting. This is possible for non-degenerate diffusions.
The theorem is that if b(b)bt(x) is positive definite for every x (and sufficiently
differentiable), and if g(x)g(x)t = b(x)b(x)t for all x, then the measures P and
Q are equivalent. Moreover, there is an explicit formula for the re-weighting
function L(X[0,T ] that takes Q to P . A slightly simpler statement is that any
non-degenerate diffusion is equivalent to a martingale, which is a diffusion pro-
cess with drift coefficient equal to zero. If you want to re-weight Q to P , you
can do it two stages. You re-weight both Q and P to be a martingale. Call this
martingale measure R. If L makes Q into R, and M makes P into R, then L/M
makes Q into P . Girsanov’s formula is the formula for L(X) that changes the
drift.

I explain the theorem and the re-weighting formula in the simple case of a
one dimensional diffusion with constant noise

dXt = a(Xt)dt + dWt . (4)

We want to re-weight this to set a ≡ 0, which is the case of standard Brownian
motion. We suppose for simplicity that X0 = 0. The argument here is quite
simple in principle but it does involve some calculations.

Suppose you choose ∆t = T/n so that exactly n time steps take you to time
T . Consider the n component vector ~X of n observations of the path Xt at the
times tk = k∆x: ~X = (X∆t, X2∆t, . . . , XT ). Because ~X is a random element in
Rn, it has a probability density u(~x) = u(x1, . . . , xn). Here, xk is the variable
corresponding to Xtk . We will find an approximate formula for u and see how
it depends on a. Then it will be easy to find a factorization u(~x) = Ln( ~X)v(~x)
where v(~x) is the probability density for ~X if a ≡ 0 in (4). The limit of Ln( ~X)
as n → ∞ will be easy to identify. That will be Girsanov’s formula in this
example.

The joint probability density u(~x) is the product of the individual transition
densities u(xk+1 | xk). By the Markov property,

u(xk+1 | (x1, . . . , xk)) = u(xk+1 | xk) .

Write u(x1, k . . . , xk) for the joint density of (x1, . . . , xk). Bayes’ rule and the
Markov property give

u(x1, . . . , xk+1) = u(xk+1 | xk)u(x1, . . . , xk) = · · · =
k∏
j=0

u(xj+1 | xj) .

This gives

u(~x) =
n−1∏
j=1

u(xj+1 | xj) . (5)
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This is an exact formula, but it is not so useful because we do not have a formula
for the transition probability densities u(xj+1 | xj).

There is an approximate formula for the transition density that is accurate
in the limit ∆t→ 0. It comes from the forward Euler approximation to (4) from
the last class. Applied to (4), this gives

Xk+1 = Xk + a(Xk)∆t +
√

∆tZk ,

where the Zk are independent standard normals. In this approximation, the
conditional density of Xtk+1 conditional on Ftk (i.e. conditioned on Xtk) is
normal with mean Xtk + a(Xtk)∆t and variance ∆t. That is

u(xk+1 | xk) ≈ 1√
2π∆t

exp

[
− (xk+1 − xk − a(xk)∆t)2

2∆t

]
(6)

Now multiply these together as (5) says to do, and you get

u(~x) ≈ 1

(2π∆t)n/2
exp

 −1
2∆t

n−1∑
j=1

(xj+1 − xj − a(xj)∆t)
2

 . (7)

With a ≡ 0, (7) simplifies to

v(~x) =
1

(2π∆t)n/2
exp

 −1
2∆t

n−1∑
j=1

(xj+1 − xj)2

 . (8)

This formula is exact because with a ≡ 0, the process (4) is a standard Brownian
motion. The transition density formula (6) is exact for Brownian motion because
its transitions are exactly Gaussian.

It is relatively simple to get the formula for Ln(~x) = u(~x)/v(~x). The 2π∆t
factors cancel. Moreover

(xk+1 − xk − a(xk)∆t)2 = (xk+1 − xk)2− 2 (xk+1 − xk) a(xk)∆t+ a(xk)2∆t2 .

All this gives

Ln(~x) = exp

[
n−1∑
k=1

(xk+1 − xk) a(xk)

]
exp

[
−1
2

n−1∑
k=1

a(xk)2∆t

]
.

The problem is to find the limit as n→∞ when Xk = Xtk is the SDE process
(4).

With the identification xk = Xtk , the exponent in the second factor contains

n−1∑
j=1

a(xk)2∆t −→
∫ T

0

a(Xt)2dt , as ∆t→ 0 .
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In the same way, the sum in the first factor converges to the Ito integral:

n−1∑
k=1

a(Xtk)
(
Xtk+1 −Xtk

)
−→

∫ T

0

a(Xt)dXt .

Putting all this together gives Girsanov’s formula for this case

L(X) = exp

[∫ T

0

a(Xt)dXt −
1
2

∫ T

0

a(Xt)2dt

]
. (9)

Weighting a Brownian motion by (9) turns it into a solution of the SDE (4),
in the following sense. Suppose you want to evaluate f = E[V (XT )], where Xt

satisfies the SDE (4). One way to do this is use the Euler method to generate
a many (approximate) sample paths for (4). But our other formula for f is

f = Ebm

{
V (XT ) exp

[∫ T

0

a(Xt)dXt −
1
2

∫ T

0

a(Xt)2dt

]}
(10)

In this formula, Xt is standard Brownian motion.
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