Stochastic Calculus, Courant Institute, Fall 2011

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2011/index.html

Always check the class bloomed on the blackboard site from home.nyu.edu (click on academics, then on Derivative Securities) before doing any work on the assignment.

Sample questions for the final exam

Instructions for the final:

- The final is Monday, December 19 from 7:10 to 9pm
- Explain all answers, possibly briefly. A correct answer with no explanation may receive no credit.
- You will get 20% credit for not answering a question. Points will be subtracted if you give a wrong answer.
- Cross off anything you think is wrong. You will have points subtracted for wrong answers even if the correct answer also appears.
- You may use one $8\frac{1}{2} \times 11$ piece of paper, a *cheat sheet* with anything you want written on it.
- The actual exam will be shorter than this.

True/False. In each case, state whether the statement is true of false and give a few words or sentence of explanation.

- 1. Suppose $Z = (Z_1, \ldots, Z_n)^2$ with the $Z_k \sim \mathcal{N}(0, 1)$ independent. Suppose that A and B are $n \times n$ non-singular matrices with $A \neq B$. Then X = AZ and Y = BZ are not equal (almost surely).
- 2. Suppose $Z = (Z_1, \ldots, Z_n)^2$ with the $Z_k \sim \mathcal{N}(0,1)$ independent. Suppose that A and B are $n \times n$ non-singular matrices with $A \neq B$. Then X = AZ and Y = BZ have different probability distributions.
- 3. Suppose \mathcal{F}_t is a filtration on a probability space Ω . Suppose X is a random variable and $X_t = E[X \mid \mathcal{F}_t]$. Then X_t is a Markov chain.
- 4. If X_t is a martingale, then X_t is a Markov chain. (Give a counter-example if it's false.)
- 5. If $dX_t = \gamma_t X_t dt + dW_t$ and $dY_t = \lambda Y_t dt + dX_t$, then Y_t is an Ornstein Uhlenbeck process.
- 6. If S_t is a geometric Brownian motion then S_t^3 is a geometric Brownian motion.

Multiple choice In each case only one of the possible answers is correct. Identify the correct answer and explain why.

- 7. Suppose X_t is a Markov process, and $t_1 < t_2 < T$. Suppose the σ -algebra \mathcal{F}_t is generated by X_s for $s \leq t$ and the σ -algebra \mathcal{G}_t is generated by X_t only. Which of the following is a consequence of the tower property
 - (a) $\mathcal{F}_{t_1} \subseteq \mathcal{F}_{t_2}$.
 - (b) There is a function f(x,t) so that $E[V(X_T) \mid \mathcal{F}_t] = f(X_t,t)$.
 - (c) $f(x,t_1) = E_{x,t_1}[f(X_{t_2},t_2)]$, where f(x,t) is the function so that $E[V(X_T) | \mathcal{F}_t] = f(X_t,t)$.
 - (d) $E[V(X_T) \mid \mathcal{F}_t] = E[V(X_T) \mid \mathcal{G}_t]$
- 8. Suppose X_t and Y_t are geometric Brownian motions that satisfy $dX_t = \mu_X X_t dt + \sigma_X X_t dW_{1,t}$, and $dY_t = \mu_Y Y_t dt + \sigma_Y Y_t dW_{2,t}$. Here $W_{1,t}$ and $W_{2,t}$ are independent Brownian motions, $\mu_X \neq \mu_Y$ and $\sigma_X \neq \sigma_Y$. Let $S_t = X_t + Y_t$. Then
 - (a) S_t is a Markov process but not a diffusion process.
 - (b) S_t is a geometric Brownian motion.
 - (c) S_t is a diffusion and a Markov process.
 - (d) S_t is a diffusion process but not a Markov process.

General questions.

- 9. Suppose X_t satisfies the SDE $dX_t = adt + dW_t$ (a is a constant) with $X_0 = 0$. What is the distribution of X_3 given that $X_1 = -1$, $X_4 = 2$, and $X_5 = 1$? Give the type of distribution and the parameters that describe the conditional distribution of X_3 completely.
- 10. If X is an exponential random variable with m = E[X], then $E[X^3] = Cm^3$, where C does not depend on m. Find a formula for C.
- 11. Suppose $X = \int_0^1 t dW_t$ and $Y = \int_0^1 t^2 dW_t$. Calculate $E[X^2]$ and cov(X, Y).
- 12. Suppose $dX_t = a(X_t)dt + b(X_t)dW_t$. Suppose $s = t^2$ and $Y_s = X_{t^2}$. Find the SDE that Y_s satisfies in the weak sense. Hint: calculate $E[dY \mid \mathcal{F}_s]$, where $dY = Y_{s+ds} Y_s$, etc.
- 13. Suppose X_t is an Ornstein Uhlenbeck process $dX_t = -\gamma X_t dt + \sigma dW_t$. Calculate $d\cos(X_t)$ using the Ito calculus.
- 14. Give an example of a continuous time Markov process whose sample paths are not continuous functions of time.
- 15. Consider the limits (in our usual notations)

$$Y = \lim_{\Delta t \to 0} \sum_{t_k < T} W_{t_k} (W_{t_{k+1}} - W_{t_k})$$

$$Z = \lim_{\Delta t \to 0} \sum_{t_k < T} W_{t_{k+1}} (W_{t_{k+1}} - W_{t_k})$$

Either show that Y = Z (almost surely) or find a formula for Z - Y.

- 16. Suppose that there are two urns with M_t and N_t balls respectively at time t. Suppose that new balls arrive at the M urn as a poisson process with rate λ . Suppose that each ball in the M urn jumps to the N urn in time dt with probability μdt . Suppose that the N urn has a server who removes a ball from the N urn in time dt with probability rdt if there are any balls in the N urn. Write a pair of stochastic differential equations that model this (M_t, N_t) process in the case M_t and N_t are large.
- 17. Suppose $dX_t = \mu X_t dt + \sigma X_t dW_t$ and that u(x, t) is the probability density of X_t . Write the partial differential equation that u satisfies.
- 18. A mean reverting geometric Brownian motion is defined by a system of the equations: $dX_t = \mu(X_t, \overline{X}_t) X_t dX_t + \sigma X_t dW_t$, and $d\overline{X}_t = \lambda(X_t \overline{X}_t) dt$. Suppose we want to calculate $f(x, \overline{x}, t) = E_{x, \overline{x}, t}[V(X_T)]$. Write the partial differential equation satisfied by f.