
Week 11

Backwards again, Feynman Kac, etc.

Jonathan Goodman

November 26, 2012

1 Introduction to the material for the week
sec:intro

This week has more about the relationship between SDE and PDE. We discuss
ways to formulate the solution of a PDE in terms of an SDE and how to calculate
things about an SDE using a PDE. Informally, activity of this kind is called
Feynman Kac in certain circles, and Fokker Planck in other circles. Neither
name is accurate historically, but this is not a history class.

One topic is the full forward equation. We have done pieces of it, but we
now do it in general for general diffusions. We derive the forward equation from
the backward equation using a duality argument.

Next we discuss backward equations for multiplicative function of a stochas-
tic process. If

f(x, t) = Ex,t

[
e

R T
t

V (Xs)ds
]
, (1) mf

and
dXt = a(Xt)dt+ b(Xt)dWt , (2) sde

then

0 = ∂tf +
1
2

m∑
i=1

n∑
j=1

(
b(x)bt(x)

)
ij
∂xi

∂xj
f +

n∑
i=1

ai(x)∂xi
f + V (x)f . (3) fepde

One of the differences between this and Girsanov’s formula from last week is that
here the exponent does not have an Ito integral. The relationship between (

mf
26)

and (
fepde
3) goes both ways. You can learn about the expectation (

mf
26) by solving a

PDE. Numerical PDE methods are generally more accurate than direct Monte
Carlo evaluation of (

mf
26), that is, if X does not have more than a few components.

In the other direction, you can use Monte Carlo on (
mf
26) to estimate the solution

of the PDE (
fepde
3). This can be useful if the dimension of the the PDE larger than,

say, 4 or 5.
We discuss a general principle often called splitting. This says that if there

are two or more parts of the dynamics, then you find the differential equation
describing the dynamics by adding terms corresponding to each part of the dy-
namics. The PDE (

fepde
3) illustrates this admittedly vague principle. The quantity

1

f is determined by three “factors” (vague term not related to, say, factor anal-
ysis in statistics): diffusion, advection, and the multiplicative functional. The
dynamical equation (

fepde
3) has one term for each factor. The second term 1

2

∑
· · ·

corresponds to diffusion, dX = b(X)dW . The third term corresponds to ad-
vection, dX = a(X)dt. The last corresponds to multiplication over a dt time
interval by eV (Xt)dt. Splitting applies already to the SDE (

sde
2). The right hand

side has one term corresponding to advection, adt, and another corresponding
to diffusion bdW .

2 Backward and forward

This section has much review of things we covered earlier in the course, much
earlier in some cases. It serves as review and it puts the new material into
context.

Let Xt is a Markov process of some kind. It could be a discrete time Markov
chain, or a diffusion process, or a jump process, whatever. Let S be the state
space. For each t, Xt ∈ S. Take times t < T and define the value function
f(x, t) by

f(Xt, t) = E[V (Xt) | Ft] . (4) vf

This definition applies to all kinds of Markov processes. The t variable is discrete
or continuous depending on whether the process takes place in continuous or
discrete time. The x variable is an element of the state space S. For a diffusion,
S = Rn, so f is a function of n real variables (x1, . . . , xn), as in f(x1, . . . , xn, t).
Here n is the number of components of Xt.

The generator of a stochastic process is called L. The generator is a matrix
or a linear operator. Either way, the generator has the action

g
L−→ Lg ,

that is linear: ag → aLg, and (g1 + g2) → Lg1 + Lg2. Here is the definition of
the generator, as it acts on a function.1 The discrete time process starts with
X0 = x and takes one discrete time step to X1:

Lg(x) = E[g(X1)] . (5) dgd

To say this more explicitly, if h = Lg, then h(x) = E[g(X1)]. For example, for
a simple random walk on the integers, S = Z. Suppose P(X → X + 1) = .5,
P(X → X − 1) = .3 and P(X → X) = .2. Then

E[g(X1)] = g(x+ 1) · P(X1 = x+ 1) + g(x) · P(X1 = x) + g(x+ 1) · P(X1 = x− 1)
= .5 · g(x+ 1) + .3 · g(x) + .2 · g(x− 1) .

1It is common to define abstract objects by their actions. There is a children’s book with
the line: “Don’t ask me what Voom is. I never will know. But boy let me tell you it does
clean up show.”

2

You can see that the matrix L is the same as the transition matrix

Pij = P(i→ j) = P(Xt+1 = j | Xt = i) .

This is because

E[g(X1)] =
∑

j

P(X1 = j | X0 = x) g(j) .

If g is the column vector whose entries are the values g(i), then this says that
Lg(j) is component j of the vector Pg. The transition matrix is P . The
generator is L. They are the same but have a different name.

There is a dynamics of value functions (conditional expectations) that in-
volves the generator. The derivation uses the tower property. For example,

E[g(X2)] = E[E[g(X2) | F1]] = E[Lg(X1)] = (L (Lg)) (x) = L2g(x) .

The expected value after s steps is

E[g(Xs)] = Lsg(x) .

This looks slightly different if we let s = T − t be the time remaining between
t and a final time T . Then

Ex,t[g(XT)] = LT−tg(x) .

The time variable in the backward equation is the time between the start and
the stop. When you increase this time variable, you can imagine starting further
from the stopping time, or starting at the same time and running the process
longer. This is the value function for a payout of g(XT) at time T .

Now suppose you have a continuous time Markov process in a discrete state
space. At each time t, the state Xt is one of the elements of S. The process is
described by a transition rate matrix, R, with Rij being the transition rate for
i→ j transitions. This means that if j 6= i are two elements of S, then

P(Xt+dt = j | Xt = i) = Rijdt .

Another way to express this is

P(i→ j in time dt | Xt = i) = Rijdt .

The generator of a continuous time process is defined a little differently from the
generator of a discrete time process. In continuous time you need to focus on
the rate of change of quantities, not the quantities themselves. For this reason,
we define Lg(x) as (assume X0 = x as before)

Lg(x) = lim
∆t→0

E[g(X∆t)]− g(x)
∆t

. (6) cL

In time ∆t, we expect E[g(X∆t)] not to be very different from g(x). The
definition (

cL
6) describes the rate of change. Two things about the discrete time

3

problem are similar to this continuous time problem. The generator is the same
as the transition rate matrix. The evolution of expectation values over a longer
time is given by the backward equation using the generator.

To see why L = R, we write approximate expressions for the probabilities
Pxy(∆t) = P(X∆t = y | X0 = x). (The notation keeps changing, sometimes i, j,
sometimes x, y. This week it’s not an accident.) For y 6= x, the probability is
approximately Rxy∆t. For small ∆t, the same state probability Pxx(∆t) is
approximately equal to 1. We define the diagonal elements of R to make the
formula

Pxy(∆t) = δxy + ∆tRxy (7) PR

true for all x, y. It is already true for x 6= y. To make it true for x = y, we need

Rxx = −
∑
y 6=x

Rxy .

The off diagonal entries of the rate matrix are non-negative. The diagonal
entries are negative. The sum over all landing states is zero:∑

y∈S
Rxy = 0 .

Assuming this, the formula (
PR
7) for P gives∑

y∈S
Pxy =

∑
y∈S

P(X∆t = y | X0 = x) = 1 .

This is supposed to be true. With the definitions above, it is.
With all this, we can evaluate the limit (

cL
6). Start with

E[g(X∆t)] =
∑
y∈S

Pxy(∆t)g(y) .

Now that (
PR
7) applies for all x, y we just get

E[g(X∆t)] ≈ g(x) + ∆t
∑
y∈S

Rxyg(y) .

We substitute this into (
cL
6), cancel the g(x), and then the ∆t. The result is

Lg(x) =
∑
y∈S

Rxyg(y) .

This is Lg = Rg, if we think of R as a matrix and g as the column vector made
of the numbers g(y).

It is convenient to consider functions that depend explicitly on time when
discussing the dynamics of expectation values. Let f(x, t) be such a function.
The generator discussion above implies that

E[f(X∆t, 0)] = f(x, 0) + ∆tf(x, 0) +O(∆t2) .

4

When you consider the explicit dependence of f on t, this becomes

E[f(X∆t,∆t)] = f(x, 0) + ∆t
(
Lf(x, 0) + ∂tf(x, 0)

)
+O(∆t2) .

Now consider a sequence of time steps of size ∆t, with tk = k∆t and t = tn.
Then

E[f(Xtn
, tn)]− f(x, 0) =

n−1∑
k=0

E
[
f(Xtk+1 , tk+1)− f(Xtk

, tk)
]

≈
n−1∑
k=0

E
[(
Lf(Xk, tk) + ∂tf(Xk, tk)

)
∆t
]

In the limit ∆t→ 0, this becomes

E[f(Xt, t)]− f(x, 0) =
∫ t

0

E[Lf(Xs, s) + ∂tf(Xs, s)] ds . (8) Df

This equation is true for any function f(x, t). If f satisfies the backward equation

Lf + ∂tf = 0 (9) bec

then the right side is zero, and

E[f(Xt, t)] = f(x, 0) .

As for the discrete backward equation, we can replace the time interval [0, t]
with the interval [t, T], which gives the familiar restatement

Ex,t[f(XT , T)] = f(x, t) .

The definition of the generator (
cL
6) is easy to work with, particularly if the

process is subtle. Suppose Xt satisfies the SDE (
sde
2) and g(x) is a twice differ-

entiable function. Define ∆X = X∆t − x and make the usual approximations
Then

g(X∆t)− g(x) ≈
∑

i

∆Xi∂xi
g(x) +

1
2

∑
ij

∆Xi∆Xj∂xi
∂xj

g(x) .

The SDE gives

E[∆Xi] ≈ ai(x)∆t , E[∆Xi∆Xj] ≈
(
b(x)bt(x)

)
ij

∆t

Therefore,

E[g(X∆t)− g(x)] ≈

∑
i

ai(x)∂xi
g(x) +

1
2

∑
ij

(
b(x)bt(x)

)
ij
∂xi

∂xj
g(x)

∆t .

5

Therefore,

Lg(x) =
∑

i

ai(x)∂xi
g(x) +

1
2

∑
ij

(
b(x)bt(x)

)
ij
∂xi

∂xj
g(x) . (10) cgg

It is common to specify L as an operator without putting the function g into
the expression. That would be

L =
∑

i

ai(x)∂xi +
1
2

∑
ij

(
b(x)bt(x)

)
ij
∂xi∂xj . (11) cg

This is a differential operator. It is defined by how it acts on a function g, which
is given by (

cgg
10).

The general relationship between backward and forward equations may be
understood using duality. This term has several related meanings in mathemat-
ics.2 One of them is an abstract version of the relationship between a matrix
and its transpose. In the abstract setting, a matrix becomes an operator, and
the transpose of the matrix becomes the adjoint of the operator. The transpose
of the matrix L is Lt. The adjoint of the operator L is L∗. This is important
here because if L is the generator of a Markov process, then L is the operator
that appears in the backward equation. But L∗, the adjoint of L, appears in
the forward equation. This can be the easiest way to figure out the forward
equation in practical examples. It will be easy to identify the forward equation
for general diffusions with generator L as in (

cg
11). But look back at Assignment

6 to see how hard it can be to derive the forward equation directly. When all the
“bla bla” is over, this fancy duality boils down to simple integration by parts.

We introduce abstract adjoints for operators by describing how things work
for finite dimensional vectors and matrices. In that setting, we distinguish
between the n × 1 “matrix”, f , and the 1 × n matrix, u. As a matrix, f has
one column and n rows. This is also called a column vector. As a matrix, u has
one row and n columns, which makes u a row vector. A row vector or a column
vector have n components, but they are written in different places. Suppose A
is and m × n matrix and B is an n × k matrix. Then the matrix product AB
is defined but the product BA is not, unless k = m. If A is the n component
row vector u and B is the n × n matrix L, we have m = 1 and k = n above.
The matrix product uL = v is another 1 × n matrix, or row vector. The more
traditional matrix vector multiplication involves A = L as n×n and f as n× 1,
so Lf = g is n× 1, which makes g another column vector.

Suppose S is a finite state space with states xi for i = 1, . . . , n. We can write
the probability of state xi as u(xi) or ui. If f(x) is a function of the state, we
write fi for f(xi). The expected value may be written in several ways

E[f] =
n∑

i=1

uifi =
∑
xi∈S

u(xi)f(xi) =
∑
x∈S

u(x)f(x) .

2For example, the dual of the icosahedron is the dodecahedron, and vice versa.

6

Now let u refer to the row vector with components ui and f the column vector
with components fi. Then the expected value expression above may be written
as the matrix product

E[f] = uf .

This is the product of a 1× n matrix, u, with the n× 1 matrix f . The result is
a 1× 1 “matrix”, which is just a single number, the expected value.

Now suppose f = ft = Et[V (XT)] and u = ut with ut(x) = P(Xt = x). The
tower property implies that the overall expectation is given by

E[V (XT)] = E[Et[V (XT)]] = E[ft(Xt)] = utft . (12) ext

The last form on the right is the product of the row vector ut and the column
vector ft. Note, and this is the main point, that the left side is independent of
t in the range 0 ≤ t ≤ T . This implies, in particular, that

ut+1ft+1 = utft .

But the relationship between ft and ft+1 is given by (
dgd
5), in the form ft = Lft+1.

Therefore
ut+1ft+1 = utLft+1 ,

for any vector ft+1. This may be re-written using the fact that matrix multi-
plication is associative as

(ut+1 − utL) ft+1 = 0 ,

for every ft+1. If the set of all possible ft+1 spans the whole space Rn, this
implies that

ut+1 = utL . (13) fed

To summarize: if the value function satisfies the backward equation involving
the generator L, then the probability distribution satisfies a forward equation
with that same L, but used in a different way – multiplying from the left rather
than from the right. Recall that what we call L here was called P before. It
is the matrix of transition probabilities – the transition matrix for the Markov
chain.

You can give the relationship between the backward and forward equations
in a different way if you treat all vectors as column vectors. If ut is the column
vector of occupation probabilities at time t, then the expected value formula is
E[V (XT)] = ut

tft. The backward equation formula, written using the column
vector convention, is ut

t+1ft+1 = ut
tLft+1 = (Ltut) ft+1. The reasoning we used

to get (
fed
13) now gives the column vector formula

ut+1 = Ltut .

To summarize: utft, or ut
tft is independent of t. This implies a relationship

between the dynamics of f and the dynamics of u. The relationship is that the
matrix L that does the backward dynamics of f has an adjoint (transpose) that
does the forward dynamics of u.

7

We move to a continuous time version of this that applies to continuous time
Markov chains on a finite state space S. The dynamics for ft are

d

dt
ft = −Lft ,

where L, the generator, is also the matrix of transition rates. If ut is the row
vector of occupation probabilities, ut(x) = P(Xt = x), then utft is independent
of t for the same reason as above. Therefore

0 =
d

dt
(ut · ft) =

(
d

dt
ut

)
ft + ut

(
d

dt
ft

)
=
(
d

dt
ut

)
ft − ut (Lft) .

This implies, as in the discrete time case above, that[(
d

dt
ut

)
− utL

]
ft = 0 ,

for every value function vector ft. If these vectors span Rn, then the vector in
brackets must be equal to zero:

d

dt
ut = utL .

If we use the convention of treating the occupation probabilities as a column
vector, then this is

d

dt
ut = Ltut .

It is easy to verify all these dynamical equations directly for finite state space
Markov chains in discrete or continuous time. For example, ...

With all this practice, the PDE argument for diffusion processes is quick.
Start with the one dimensional case with drift a(x) and noise b(x). The back-
ward equation is

∂tf(x, t) + Lf = ∂tf +
1
2
∂2

xf(x, t) + a(x)∂xf(x) = 0 .

Let u(x, t) be the probability density for Xt. Then as before the time t formula
for the expected payout is true for all t between 0 and T

E[V (XT)] =
∫ ∞
−∞

u(x, t)f(x, t) dx .

We differentiate this with respect to t and use the backward equation for f :

0 = ∂t

∫ ∞
−∞

u(x, t)f(x, t) dx

=
∫ ∞
−∞

(∂tu(x, t)) f(x, t) dx+
∫ ∞
−∞

u(x, t) (∂tf(x, t)) dx

=
∫ ∞
−∞

(∂tu(x, t)) f(x, t) dx−
∫ ∞
−∞

u(x, t) (Lf(x, t)) dx

8

The new trick here is to move L onto u by integration by parts. This is the
continuous state space analogue of writing ut (Lf) as (Ltu)t

f in the discrete
state space case. In the integrations by parts we assume that there are no
boundary terms at ±∞. The reason for this is that the probability density
u(x, t) goes to zero very rapidly as x → ±∞. In typical examples, such as
the Gaussian case of Brownian motion, u(x, t) goes to zero exponentially as
x→ ±∞. Therefore, even if f(x, t) does not go to zero, or even goes to infinity,
the boundary terms vanish in the limit x→ ±∞. Here is the algebra:∫ ∞

−∞
u(x, t) (Lf(x, t)) dx

=
∫ ∞
−∞

u(x, t)
(

1
2
b(x)2∂2

xf(x, t) + a(x)∂xf(x, t)
)
dx

=
∫ ∞
−∞

[
1
2
∂2

x

(
b2(x)u(x, t)

)
− ∂x (a(x)u(x, t))

]
f(x, t) dx .

The quantity in square brackets is

L∗u(x, t) =
1
2
∂2

x

(
b2(x)u(x, t)

)
− ∂x

(
a(x)u(x, t)

)
. (14) L*

This defines the operator L∗, which is the adjoint of the generator L. The
integration by parts above shows that∫ ∞

−∞
(∂tu(x, t)− L∗u(x, t)) f(x, t) dx = 0 ,

for every value function f(x, t). If there are enough value functions, the only
way for all these integrals to vanish is for the u part to vanish, which is

∂tu(x, t) = L∗u(x, t) =
1
2
∂2

x

(
b2(x)u(x, t)

)
− ∂x

(
a(x)u(x, t)

)
. (15) fecc

This is the forward Kolmogorov equation for the evolution of the probability
density u(x, t).

There many features of the forward equation to keep in mind. There are
important differences between the forward and backward equations. One differ-
ence is that in the backward equation the noise and drift coefficients are outside
the differentiation, but they are inside in the forward equation. In both cases
it has to be like this. For the backward equation, constants are solutions, ob-
viously, because if the payout is V (XT) = c independent of XT , then the value
function is f(Xt, t) = c independent of Xt. You can see f(x, t) = c satisfies the
backward equation because Lc = 0. If L were to have, say ∂x

(
a(x)f(x, t)

)
, then

we would have Lc =
(
a(x)

)
c 6= 0 if a is not a constant. That would be bad.

The forward equation, on the other hand, is required to preserve the integral of
u, not constants. If we had −a(x)∂xu(x, t) instead of −∂x

(
a(x)u(x, t)

)
, then we

9

would have (if b is constant)

d

dt

∫ ∞
−∞

u(x, t) dx =
∫ ∞
−∞

∂tu(x, t) dx

= −
∫ ∞
−∞

a(x)∂xu(x, t) dx

=
∫ ∞
−∞

(∂xa(x))u(x, t) dx ,

which is not equal to zero in general if ∂xa 6= 0.
A feature of the forward equation that takes scientists by surprise is that

the second derivative term is not

1
2
∂x

(
b2(x)∂xu(x, t)

)
.

This is because of the martingale property. In the no drift case, a = 0, we have
supposed not to change the expected value of Xt. Therefore

0 =
d

dt
E[Xt] =

d

dt

∫
xu(x, t) dx =

∫
x∂tu(x, t) dx .

If we use the correct form, this works out:∫
x∂tu(x, t) dx =

1
2

∫
x∂2

x

(
b2(x)u(x, t)

)
dx

= − 1
2

∫
(∂xx) ∂x

(
b2(x)u(x, t)

)
dx

= − 1
2

∫ (
∂2

xx
) (
b2(x)u(x, t)

)
dx

= 0 .

But the incorrect form above would give∫
x∂x

(
b2(x)∂xu(x, t)

)
dx = −

∫ (
b2(x)∂xu(x, t)

)
dx =

∫ (
∂xb

2(x)
)
u(x, t) dx .

This is not equal to zero in general.
Another crucial distinction between forward and backward is the relation

between the signs of the ∂t and ∂2
x terms. This is clearest in the simplest

example, which is Brownian motion: dX = dW , which has a = 0 and b = 1.
Then the backward equation is ∂tf + 1

2∂
2
xf = 0, and the forward equation is

∂tu = 1
2∂

2
xu. You can appreciate the difference by writing the backward equation

in the form ∂tf = − 1
2∂

2
xf . The forward equation has +∂2

x and the backward
equation has −∂2

x. This is related to the fact that the forward equation is
“intended” for evolving u(x, t) forward in time. If you specify u(x, t), you the
forward equation determines u(x, t) for t > 0. The backward is for evolving the

10

value function backward in time. If you specify f(x, T), the backward equation
determines f(x, t) for t < T .

One way to remember the signs is to think what should happen to a lo-
cal maximum. The probability density at a local maximum should go down
as you move forward in time. A local maximum represents a region of high
concentration of “particles” of probability. Moving forward in time these par-
ticles will disperse. This causes the density of particles, the probability, to go
down. Mathematically, a local maximum of u at x0 at time t0 is represented
by ∂xu(x0, t0) = 0 and ∂2

xu(x0, t0) < 0. At such a point, we want u to be de-
creasing, which is to say ∂tu(x0, t0) < 0. The forward equation with +∂2

x does
this, but with −∂2

x would get it wrong. The backward equation should lower
a local maximum in the value function f moving backward in time. Suppose
∂xf(x0, t0) = 0 and ∂2

xf(x0, t0) < 0 (a local maximum). Then suppose you start
at a time t < t0 with Xt = x0. There is a chance that Xt0 will be close to x0,
but it probably will miss at least a little. (Actually, it misses almost surely.).
Therefore f(Xt0 , t0) < f(x0, t0), so f(x0, t) = Ex0,t[f(Xt0 , t0)] < f(x0, t0). This
suggests that ∂tf(x0, t0) > 0, which makes f decrease as you move backward in
time. The backward equation with −∂2

x does this.
The multi-dimensional version of these calculations is similar. It is easier

if you express the calculations above in a somewhat more abstract way using
the generator L and an inner product appropriate for the situation. in finite
dimensions and for vectors with real components, the “standard” inner product
is

〈u, f〉 =
n∑

i=1

uifi .

Clearly, this is just a different notation for utf or uf depending on whether you
think of u as a column vector or a row vector. If L is an n × n matrix, the
definition of the adjoint of L is that matrix L∗ so that

〈u, Lf〉 = 〈L∗u, f〉 , (16) adj

for all vectors u and f . We already did the matrix calculations to show that
L∗ = Lt for matrices, and with the standard inner product. We derive the
forward equation from the backward equation, in this notation, as follows. Start
with

〈ut, ft〉 = 〈ut+1, ft+1〉 .

Then use the backward equation and the adjoint relation:

〈ut, ft〉 = 〈ut, Lft+1〉 = 〈L∗ut, ft+1〉 .

The additivity property of inner products allows us to write this in the form

〈(L∗ut − ut+1) , ft+1〉 = 0 .

This is supposed to hold for all ft+1, which forces the vector in parentheses to
be zero (another property of inner products).

11

The continuous time version of this is about the same. It is a property of
inner products that

d

dt
〈ut, ft〉 = 〈 d

dt
ut, ft〉+ 〈ut,

d

dt
ft〉 .

If the inner product is independent of t and f satisfies the backward equation,
this gives

0 = 〈 d
dt
ut, ft〉 − 〈ut, Lft〉

= 〈 d
dt
ut, ft〉 − 〈L∗ut, ft〉

= 〈
(
d

dt
ut − L∗u

)
, ft〉

As we argued before, if this holds for enough vectors ft, it implies that the
quantity in parentheses must vanish, which leads to:

d

dt
ut = L∗ut . (17) feg

This says that to find the forward equation from the backward equation, you
have to find the adjoint of the generator.

The generator of the multi-dimensional diffusion process is given by (
cgg
10)

or (
cg
11). We simplify the notation by defining the diffusion coefficient matrix

µ(x) = b(x)bt(x). The components of µ are the diffusion coefficients µjk =∑
l bjlbkl. The quantity that is constant in time is∫

Rn

u(x1, . . . , xn, t)f(x1,xn, t) dx1 · · · dxn . (18) ndi

The adjoint of L is the operator L∗ so that∫
(L∗u(x, t)) f(x, t) dx =

∫
u(x, t) (Lf(x, t)) dx

The adjoint is found by integration by parts. The generator is the sum of many
terms. We do the integration by parts separately for each term and add the
results. A typical first derivative part of L is aj(x)∂xj . The adjoint of this
term is found by integrating by parts in the xj variable, which is just one of the
variables in the n dimensional integration (

ndi
18). That is∫ ∞

xj=−∞
u(x, t)aj(x)∂xjf(x, t) dxj = −

∫ ∞
xj=−∞

[
∂xj (aj(x)u(x, t))

]
f(x, t) dxj .

The integrations over the other variables does nothing to this. The result is∫
Rn

u(x, t)aj(x)∂xj
f(x, t) dx = −

∫
Rn

[
∂xj

(aj(x)u(x, t))
]
f(x, t) dx .

12

A typical second derivative term in L is µjk(x)∂xj∂xk
. If j 6= k, you move

these derivatives from f onto u by integration by parts in xj and xk. The overall
sign comes out + because you do two integrations by parts. The result is∫

xj ,xk

u(x, t)µjk(x)∂xj
∂xk

f(x, t) dxjdxk =
∫

xj ,xk

[
∂xj∂xk

(µjk(x)u(x, t))
]
f(x, t]dxjdxk .

You can check that this result is still true if j = k. Altogether, the adjoint of L
is

L∗u(x, t) =
1
2

n∑
j=1

n∑
k=1

∂xj
∂xk

(µjk(x)u(x, t))−
n∑

j=1

∂xj
(aj(x)u(x, t)) . (19) L*c

The forward equation for the probability density is

∂tu(x, t) =
1
2

n∑
j=1

n∑
k=1

∂xj∂xk
(µjk(x)u(x, t))−

n∑
j=1

∂xj (aj(x)u(x, t)) . (20) fec

A common rookie mistake is to get the factor of 1
2 wrong in the second deriva-

tive terms. Remember that the off diagonal terms, the ones with j 6= k, are
given twice in (

L*c
19), once with (j, k) and again with (k, j). For example, in two

dimensions, the second derivative expression is

1
2
∂2

x1
(µ11(x)u(x, t)) +

1
2
∂2

x2
(µ22(x)u(x, t)) + ∂x1∂x2 (µ12(x)u(x, t)) .

The matrix µ = bbt is symmetric, even when b is not symmetric. Therefore, it
does not matter whether you write µ12 or µ21.

This stuff is closely related to Ito’s lemma. Suppose f(x, t) is some function.
The Ito differential is

df(Xt, t) = ∂tfdt+ Lf(Xt, t)dt+∇f(Xt, t)b(Xt, t)dWt . (21) ilg

This is not a form we have used before, but it is easy to check. The expectation
from this is

E[df(Xt, t) | Ft] = (∂tf(Xt, t) + Lf(Xt, t)) dt . (22) ilge

This is more or less our definition of generator above.

3 Feynman Kac and other equations

There are backward equations for lots of other functions of a process. One
example is the running cost or running payout problem. (Engineers talk about
costs. Finance people talk about payouts.)

A =
∫ T

0

V (Xs)ds . (23) af

13

The corresponding value function is

f(x, t) = Ex,t

[∫ T

t

V (Xs)ds

]
. (24) afv

The Ito differential (
ilg
21) is the easy to find the backward equation. On one hand

you have

d

[∫ T

t

V (Xs)ds | Ft

]
= −V (Xt)dt .

On the other hand we have (
ilg
21) or (

ilge
22). Together, this give

−V (x)dt = ∂tf(x, t) + Lf(x, t) .

This gives the backward equation

0 = ∂tf + Lf + V (x)f . (25) afbe

If you want to know the value of A in (
af
23), one way to find it is to solve the

backward equation with final condition f(x, T) = 0. Then A = f(x0, 0). In
this approach you have to solve the whole PDE and compute the whole value
function just to find the single number A.

The correspondence between the additive function (
af
23) and the backward

equation (
afbe
25) can go both ways. You can use the PDE to find the value of A. You

can use the definition (
afv
24) to find the solution of the PDE (

afbe
25). This is useful in

situations where the backward equation was not derived as a probability model.
It is most important when the dimension of the problem is more than a few,
maybe more than 4 or 5, where PDE solution methods are impractical.

Another connection of this kind concerns the multiplicative function

A = exp

(∫ T

0

V (Xs)ds

)
. (26) mf

We study this using the corresponding value function

f(x, t) = Ex,t

[
exp

(∫ T

t

V (Xs)ds

)
| Ft

]
. (27) mfv

We find the backward equation for this value function following the reasoning
we used for the previous one. On one hand, we have

d exp

(∫ T

t

V (Xs)ds

)
= −V (Xt) exp

(∫ T

t

V (Xs)ds

)
dt .

(If Yt is the additive functional Yt =
∫ T

t
V (Xs)ds, then dY has no Ito part, so

d eYt = eYtdYt. We just did dYt.) So we equate this with the Ito version of df
given in (

ilg
21) and (

ilge
22) to get

E[df(Xt, t) | Ft] = ∂tf(Xt, tdt) + Lf(Xt, t)dt = −V (Xt)f(Xt, t)dt .

14

Rearranging this leads to

∂tf(x, t) + Lf(x, t) + V (x)f(x, t) = 0 . (28) mfbe

The final condition for this one is f(x, T) = 1.
Again, the relationship between the multiplicative value function (

mfv
27) and

the backward equation (
mfbe
28) can be useful either way. Solving the PDE allows

you to calculate the expectation of the multiplicative function. Using the mul-
tiplicative function (

mfv
27) allows you to use Monte Carlo to compute the solution

of the PDE (
mfbe
28). It might happen that we want the PDE solution with final

condition f(x, T) = g(x) that is not identically equal to 1. In this case, the
solution formula is clearly (think this through)

f(x, t) = Ex,t

[
g(Xt) exp

(∫ T

t

V (Xs)ds

)
| Ft

]
.

This solution formula for the PDE is called the Feynman Kac formula. A version
of this was proposed by the physicist Feynman in the 1940’s for the related PDE
that has iL instead of L. Feynman’s formula was criticized by mathematicians
for not being rigorous, in my opinion somewhat unfairly. The mathematician
Kac3 discovered the present completely rigorous version of Feynman’s formula.
Modern probabalists, particularly applied probabilists working in finance or
operations research, call the PDE (

mfbe
28) the Feynman Kac formula instead. This

reverses the original intention. Some go even further, using the term “Feynman
Kac” for any backward equation of any kind.

3Pronounced “cats”. Another spelling of the same Polish name is “Katz”.

15

