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1 Introduction to the material for the week

This week starts the other calculus aspect of stochastic calculus, the limit ∆t→
0 and the Ito integral. This is one of the most technical classes of the course.
Look for applications in coming weeks. Brownian motion plays a new role
this week, as a source of white noise that drives other continuous time random
processes. Starting this week, Wt usually denotes standard Brownian motion,
so that Xt can denote different random process driven by W in some way. The
driving white noise is written informally as dWt.

White noise is a continuous time analogue of a sequence of i.i.d. random
variables. Let Zn be such a sequence, with E[Zn] = 0 and E

[
Z2

n

]
= 1. These

generate a random walk,

Vn =
n−1∑
k=0

Zk . (1)

The Vn can be expressed in a more dynamical way by saying V0 = 0 and
Vn+1 = Vn + Zn. If the sequence Wn is given, then

Zn = Vn+1 − Vn . (2)

In the continuous time limit, a properly scaled Vn converges to Brownian motion.
The discrete time “independent increments property” is the statement that Zn

defined by (2) are independent. The discrete time analogue of the fact that
Brownian motion is homogeneous in time is the statement that the Zn are
identically distributed.

I.i.d. noise processes cannot have general distributions in continuous time. A
continuous time i.i.d. noise processes, white noise, is Gaussian. The continuous
time scaling limit for Brownian motion is

1√
∆t

Vn
D
⇀Wt , as ∆t→ 0 with tn = n∆t, and tn → t. (3)

The CLT implies that Wt is Gaussian regardless of the distribution of Zn. White
noise dWt is Gaussian as well, in whatever way it makes sense.
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In continuous time, it is simpler to define white noise from Brownian motion
rather than the other way around. The continuous time analogue of (2) is to
write dWt as the source of noise. The continuous time analogue of (1) would be
to define a white noise process Zt somehow, then get Brownian motion as

Wt =
∫ t

0

Zs ds . (4)

The numbers Wt make sense as random variables and the path Wt is a contin-
uous function of t. The numbers Zt do not make sense in the same way.

The Ito integral with respect to Brownian motion is written

Xt =
∫ t

0

fsdWs . (5)

The relation between X and W may be expressed informally in the Ito differ-
ential form

dXt = ftdWt . (6)

The integrand, f , must be adapted to the filtration generated by W . If Ft

is generated by the path W[0,t], then ft must be measurable in Ft. The Ito
integral is different from other stochastic integrals (e.g. Stratonovich) in that
the increment dWt is taken to be in the future of t and therefore independent
of f[0,t]. This implies that

E[ dXt | Ft] = ftE[ dWt | Ft] = 0 , (7)

and
E
[
dX2

t | Ft

]
= f2

t E
[
dW 2

t | Ft

]
= f2

t dt . (8)

The Ito integral is important because more or less any continuous time con-
tinuous path stochastic process Xt can be expressed in terms of it. A martingale
is a process with the mean zero property (7). More or less any such martingale
can be represented as an Ito integral (27). This is in the spirit of the central
limit theorem. In the continuous time limit, a process is determined by its mean
and variance. If the mean is zero, it is only the variance, which is f2

t .
The mathematics this week is reasonably precise yet not fully rigorous. You

should be able to understand it if you have not studied “mathematical analysis”.
This material is not “for culture”. You are expected to master it along with
the rest of the course. If this were not possible, or not important, the material
would not be here.

The approach taken here is not the standard approach using approximation
by “simple functions” and the Ito isometry formula. You can find the standard
approach in the book by Oksendal, for example. The standard approach is
simpler but relies more results from measure theory. The approach here will look
almost the same as the standard approach if you do it completely rigorously,
which we do not.
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2 Pathwise convergence and the Borel Cantelli
lemma

Section 3 constructs a sequence of approximations to the Ito integral, Xm
t . This

section is a description of some technical tools that can show that the Xm
t

converge to a limit as m → ∞. What we describe is related to the standard
Borel Cantelli lemma but it is not the same. This section is written without the
usual motivations. You may need to read it twice to see how things fit together.

Suppose am > 0 is a sequence of numbers with a finite sum

s =
∞∑

m=1

am <∞ . (9)

Let rn be the tail sum
rn =

∑
m>n

am .

Then rn → 0 as n→∞. The proof of this is that the partial sums

sn =
n∑

m=1

am

converge to s, and sn + rn = s for any n, so s− sn = rn → 0 as k →∞.
Now suppose bm is a sequence of numbers with |bm| ≤ am. Consider the

sum

x =
∞∑

m=1

bm . (10)

The sum converges absolutely if the am have a finite sum. Therefore (9) implies
that x is well defined. The partial sums for (10) are

xn =
n∑

m=1

bm .

These satisfy

|x− xn| =

∣∣∣∣∣∑
m>n

bm

∣∣∣∣∣ ≤ ∑
m>n

aj = rn → 0 ,

as n→∞. If xm is a sequence of numbers with bm = xm+1−xm, then the limit

x = lim
n→∞

xn =
∞∑

m=1

bm

is well defined. Moreover,

|x− xn| < rn → 0 , as n→∞ . (11)
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Suppose Am is a sequence of non-negative random numbers. Typically, the
Am can be arbitrarily large and so it might happen that S =

∑
Am = ∞. We

hope to show that the probability it will happen is zero. The event S = ∞ is
a measurable set, which in some sense means it is a possible outcome. But if
P(S =∞) = 0, you will never see that outcome. We say that an event D ⊂ Ω
happens almost surely if P(D) = 1. This is abbreviated as a.s., as in S < ∞
almost surely, or S <∞ a.s. Other expressions are a.e., for almost everywhere,
and p.p., for presque partout (almost everywhere, in French).

Many people refuse to distinguish between outcomes that are impossible,
which would be ω /∈ Ω, and events that have probability zero. We will be sloppy
with the distinction in this class, and ignore it much of the time.

Our strategy will be to show that S < ∞ a.s. by showing that E[S] < ∞.
That is

∞∑
j=m

E[Am] <∞ =⇒
∞∑

m=1

Am <∞ a.s.

In particular, let Xm
t be a sequence of random paths. Suppose you can show

that

E
[ ∣∣Xm+1

t −Xm
t

∣∣] ≤ am , with
∞∑

m=1

am <∞ , (12)

for all t ≤ T . Then you know that the following limit exists almost surely

Xt = lim
j→∞

Xm
t . (13)

This is our version of the Borel Cantelli lemma. We calculate expected values
to verify the hypothesis (12), then we conclude that the limit exists pathwise
almost surely.

3 Riemann sums for the Ito integral

We use the following Riemann sum approximation for the Ito integral (27):

Xm
t =

∑
tj<t

ftj ∆Wj . (14)

The notation is
∆t = 2−m , (15)

tj = j∆t , (16)

Wt is a standard Brownian motion, and

∆Wj = Wtj+1 −Wtj
, (17)

The pathwise convergence will be that for almost every Brownian motion path,
the approximations (14) converge to a limit. This limit will be measurable in
Ft because Xt is a function of W[0,t].
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The Riemann sum approximation (14) needs lots of explanation. The Brow-
nian motion increment used at time tj (17) is in the future of tj . We assume that
ftj

is measurable in Ftj
, so this makes ∆Wj independent of ftj

. In particular,

E
[
ftj

∆Wj | Ftj

]
= 0 , (18)

and
E
[ (
ftj

∆Wj

)2 | Ftj

]
= f2

tj
∆t . (19)

The Riemann sum definition (14) definies Xm
t for all t. It gives a path that

is discontinuous at the times tj . Sometimes it is convenient to re-define Xm
t

by linear interpolation between tj and tj+1 so that it is continuous. Those
subtleties do not matter this week.

We use the limit m → ∞ rather than ∆t → 0. It is easy to compare the
∆tm = 2−m approximation to the one with ∆tm+1 = 1

2∆tm, as we will see.
Moreover, taking ∆t→ 0 rapidly makes it easier for the sum (12) to converge.

We assume that the integrand ft is continuous in some way. Specifically, we
assume that if s > 0, then

E
[

(ft+s − ft)
2 | Ft

]
≤ Cs . (20)

This allows integrands like ft = Wt, or ft = tWt. Some of the integrands we
use later in the course do not satisfy this hypotheses, but most are close. We
will re-examine the conditions on ft below to see what is really necessary.

The main step in the proof is the estimation of the terms in (12). The move
from m to m + 1 replaces ∆tm by ∆tm+1 = 1

2∆tm. We can write Xm+1
t in

terms of the extended m definition tj+ 1
2

= (j + 1
2 )∆t. For simplicity, we write

skip the t’s and write fj+ 1
2

for ft
j+ 1

2
, and Wj+ 1

2
for Wt

j+ 1
2

, etc.

Xm+1
t =

∑
tj<t

[
fj+ 1

2

(
Wj+1 −Wj+ 1

2

)
+ fj

(
Wj+ 1

2
−Wj

)]
+Q .

The Q on the end is the term that may result from Xm+1
t having an odd number

of terms in its sum. In that case, Q is the last term. It makes a negligible
contribution to the sum. We subtract from Xm+1

t the Xm
t sum

Xm
t =

∑
tj<t

fj (Wj+1 −Wj) .

The result is

Xm+1
t −Xm

t =
∑
tj<t

(
fj+ 1

2
− fj

)(
Wj+1 −Wj+ 1

2

)
+Q . (21)

The terms on the right side of (21) have mean zero. This implies that the
sum has cancellations that may be hard to see if we take absolute values too
soon. We find the cancellations by calculating the square and using the Cauchy

5



Schwarz inequality. In probability, a form of the Cauchy Schwarz inequality is
that if U and V are two random variables, then (proof in the next paragraph)

E[UV ] ≤
√

E[U2] E[V 2] .

For V = 1, this is just
E[U ] ≤

√
E[U2] .

Computing the square of (21) gives

E
[ ∣∣Xm+1

t −Xm
t

∣∣] ≤ am ,

where
a2

m = E
[ (
Xm+1

t −Xm
t

)2]
.

This is something we can caluclate.
(Here is a proof of the Cauchy Schwarz inequality in the form we need. The

following quantity is non-negative for any α

0 ≤ E
[

(U − αV )2
]

= E
[
U2
]
− 2αE[UV ] + α2E

[
V 2
]
.

We minimize the right side by taking α = E[UV ] /E
[
V 2
]
. Putting this in the

first expression gives

0 ≤ E
[
U2
]
− E[UV ]2

E[V 2]
.

Multiply through by E
[
V 2
]

and you get Cauchy Schwarz.)
Denote a typical term in the sum on the right of (21) as

Yj =
(
fj+ 1

2
− fj

)(
Wj+1 −Wj+ 1

2

)
.

It is clear from the definition that

E
[
Yj | Fj+ 1

2

]
=
(
fj+ 1

2
− fj

)
E
[
Wj+1 −Wj+ 1

2
| Fj+ 1

2

]
= 0

It follows from the tower property that E[Yj | Fj ] = 0 If k < j, then Yk is
known in Fj , so

E[YkYj | Fj ] = YkE[Yj | Fj ] = 0 .

In the expected value of (
∑
Y 2

j ) =
∑

(YjYk) there are two kinds of terms. We
just saw that off diagonal terms, those with j 6= k have expected value equal to
zero. A typical diagonal term has

E
[
Y 2

j | Fj+ 1
2

]
= E

[(
fj+ 1

2
− fj

)2 (
Wj+1 −Wj+ 1

2

)2
∣∣∣∣Fj+ 1

2

]
=
(
fj+ 1

2
− fj

)2

E
[(
Wj+1 −Wj+ 1

2

)2
∣∣∣∣Fj+ 1

2

]
=
(
fj+ 1

2
− fj

)2 ∆t
2
.
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The next expectation, and (20) gives the desired inequality

E
[
Y 2

j | Fj

]
= E

[(
fj+ 1

2
− fj

)2

| Fj

]
∆t
2
≤ C∆t2 .

Finally,
a2

m ≤ C
∑
tj<t

∆t2 = C∆t
∑
tj<t

∆t ≤ Ct∆tm .

You can check that adding Q to this calculation does not change the conclusion.
The last inequality may be written

am ≤ C
√
t
√

∆tm ≤ C
√
tαm ,

where α = 2−1/2 < 1. The sum in (12) becomes a convergent geometric series.
This completes the proof that the approximations (14) converge to something.

We used the powers of two in two ways. First, it made it easy to compare Xm
t

to Xm+1
t . Second, it made the sum on the right of (12) a convergent geometric

series. In another week (which we will not do in this course), we could show that
the restriction to powers of 2 for ∆t is unnecessary. You can see how to relax
our assumption (20). For example, it suffices to take E

[
(ft+s − ft)

2
]
≤ Cs,

rather than the conditional expectation. This allows discontinuous integrands
that depend on hitting times. It is possible to substitute a power of s less than
1, such as

√
s. This would just lead to a different α < 1 in the final geometric

series.

4 Example

There are a few Ito integrals that can be computed directly from the definition.
Ito’s lemma, which we will see next week, is a better way to approach actual
calculations. This is as in ordinary calculus. Riemann sums are a good way
to define the Riemann integral, but the fundamental theorem of calculus is an
easier way to compute specific examples.

The first example is

Xt =
∫ t

0

WsdWs . (22)

The Riemann sum approximation is

Xm
t =

∑
tj<t

Wtj

(
Wtj+1 −Wtj

)
.

The trick for doing this is

Wtj =
1
2
(
Wtj+1 +Wtj

)
− 1

2
(
Wtj+1 −Wtj

)
.
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This leads to

Xm
t =

1
2

∑
tj<t

(
Wtj+1 +Wtj

) (
Wtj+1 −Wtj

)
−1

2

∑
tj<t

(
Wtj+1 −Wtj

) (
Wtj+1 −Wtj

)
.

A general term in the first sum is(
Wtj+1 +Wtj

) (
Wtj+1 −Wtj

)
= W 2

tj+1
−W 2

tj
.

Therefore, the first sum is a telescoping sum,1 which is a sum of the form

(a− b) + (b− c) + · · ·+ (x− y) + (y − z) = a− z .

Let tn = max {tj | tj < t}, then the first sum is 1
2

(
W 2

tn+1
−W 2

0

)
. This simplifies

more because W0 = 0 to 1
2W

2
tn+1

. Clearly, Wtn+1 →Wt as ∆t→ 0.
The second sum involves

S =
∑
tj<t

∆W 2
j . (23)

The mean and variance describe the answer as precisely as we need. For the
mean, we have E

[
∆W 2

j

]
= ∆t, so

E[S] =
∑
tj<t

∆t = tn → t as ∆t→ 0 .

For the variance, the terms ∆Wj are independent, and var
(
∆W 2

j

)
= 2∆t2

(recall: ∆Wj is Gaussian and we know the fourth moments of a Gaussian)
Therefore

var(S) = 2∆t

∑
tj<t

∆t

 = 2∆t tn ≤ 2t2−m .

These two calculations show that S → t as m→∞. Therefore

Xm
t →

1
2
(
W 2

t − t
)

as m→∞ .

This gives the famous result∫ t

0

WsdWs =
1
2
(
W 2

t − t
)
. (24)

We have much to say about this result, starting with what it is not. The
answer would be different if Wt were a differentiable function of t. If Wt were
differentiable, then dWs = dW

ds ds, and∫ t

0

WsdWs =
∫ t

0

Ws
dW

ds
ds =

1
2

∫ t

0

d

ds
W 2

s ds =
1
2
W 2

t .

1The term comes from a collapsing telescope. You can find pictures of these on the web.
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The Ito result (24) is different. The Ito calculus for rough functions like Brow-
nian motion gives results that are not what you would get using the ordinary
calculus. In ordinary calculus, the sum (23) converges to zero as ∆t→ 0. That
is because ∆W 2

j scales like ∆tt2 if Wt is a differentiable function of t, so S is
like ∆t

∑
tj<t ∆t = ∆t t. But ∆W scales like ∆t for Brownian motion. That is

why S makes a positive contribution to the Ito integral.
The answer differentiable calculus answer 1

2W
2
t is wrong because it is not a

martingale. A martingale is a stochastic process so that if t > s, then

E[Xt | Fs] = Xs . (25)

The Ito integral is a martingale. But

E
[
W 2

t | Fs

]
= W 2

s + (t− s) ,

so W 2
t is not a martingale (see Section 5). The correct formula (24) is a mar-

tingale. The “correction” W 2
t →W 2

t − t accomplishes this.

5 Properties of the Ito integral

This section discusses two properties of the Ito integral: (1) the martingale
property, (2) the Ito isometry formula.

Two easy steps verify the martingale property. Step one is to say that we
can define the Ito integral with a different start time as∫ t

a

fsdWs = lim
m→∞

∑
a≤tj<t

ftj

(
Wtj+1 −Wtj

)
. (26)

This has the additivity property∫ a

0

fsdWs +
∫ t

a

fsdWs =
∫ t

0

fsdWs .

Step two is that

E
[ ∫ t

a

fsdWs

∣∣∣Fa

]
= 0 .

This is because the right side of (26) has expected value zero. That is because
all the terms on the right are in the future of Fa. That zero expectation is
preserved in the limit ∆t → 0. A general theorem in probability says that if
Ym is a family of random variables and Ym → Y as m → ∞, and if another
technical condition is satisfied (discussed in Week 8), then E[Ym] → E[Y ] as
m→∞.

When we use these facts together, we conclude that

E
[ ∫ t

0

fsdWs

∣∣∣Fa

]
= E

[ ∫ a

0

fsdWs

∣∣∣Fa

]
+E
[ ∫ t

a

fsdWs

∣∣∣Fa

]
= E

[ ∫ a

0

fsdWs

∣∣∣Fa

]
= Xa .

9



This is the martingale property for Xt.
The Ito isometry formula is

E

[(∫ t

0

fsdWs

)2
]

=
∫ t

0

E
[
f2

s

]
ds . (27)

The variance of the Ito integral is equal the the ordinary integral of the expected
square of the integrand. The ideas we have been using make the proof of this
formula routine. Informally, we write

E[ fsdWsfs′dWs′ ] =
{

0 if s 6= s′

E
[
f2

s

]
ds if s = s′ .

The unequal time formula on the top line reflects that either dWs of dWs′ is
in the future of everything else in the formula. The equal time formula on the
bottom line reflects the informal E

[
(dWs)2 | Fs

]
= dt. Then(∫ t

0

fsdWs

)2

=
∫ t

0

fsdWs ·
∫ t

0

f ′sdW
′
s =

∫ t

0

∫ t

0

fsdfs′dWsWs′ .

Taking expectations,

E

[(∫ t

0

fsdWs

)2
]

=
∫ t

0

∫ t

0

E[ fsdfs′dWsWs′ ]

=
∫ t

0

E
[
f2

s

]
ds .

A more formal, but not completely rigorous, version of this argument is little
different from this. We merely switch to the Riemann sum approximation and
take the limit at the end:

E


∑

tj<t

ftj
∆Wtj

2
 = E

∑
tj<t

∑
tk<t

ftj
ftk

∆Wtj
∆Wtk


=
∑
tj<t

∑
tk<t

E
[
ftj
ftk

∆Wtj
∆Wtk

]
=
∑
tj<t

E
[
f2

tj
E
[

∆W 2
tj
| Ftj

]]
=
∑
tj<t

E
[
f2

tj

]
∆t .

The last line is the Riemann sum approximation to the right side of (27).
Let us check the Ito isometry formula on the example (24). For the Ito

integral part we have (recall that X ∼ N (0, σ2) implies var
(
X2
)

= 2σ4)

var
(∫ t

0

WsdWs

)
=

1
4

var
(
W 2

t − t
)

=
1
4

var
(
W 2

t

)
=

1
4

2t2 =
t2

2
.
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For the Riemann integral part, we have∫ t

0

E
[
W 2

s

]
ds =

∫ t

0

s ds =
t2

2
.

As the Ito isometry formula (27) says, these are equal.
A simpler example is fs = s2, and

Xt =
∫ t

0

s2dWs .

This is more typical of general Ito integrals in that Xt is not a function of Wt

alone. Since X is a linear function of W , X is Gaussian. Since X is an Ito in-
tegral, E[Xt] = 0. Therefore, we characterize the distribution of Xt completely
by finding its variance. The Ito isometry formula gives (f2

s = E
[
f2

s

]
= s4)

var(Xt) =
∫ t

0

s4 ds =
s5

5
.

This may be easier than the method used in question (3) of Assignment 3.
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