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1 Introduction to the material for the week
sec:intro

Ito’s lemma is the big thing this week. It plays the role in stochastic calculus
that the fundamental theorem of calculus plays in ordinary calculus. Most actual
calculations in stochastic calculus use some form of Ito’s lemma. Ito’s lemma
is one of a family of facts that make up the Ito calculus. It is an analogue for
stochastic processes of the ordinary calculus of Leibnitz and Netwon. We use
it both as a language for expressing models, and as a set of tools for reasoning
about models.

For example, suppose Nt is the number of bacteria in a dish (a standard
example in beginning calculus). We model Nt in terms of a growth rate, r. In a
small increment of time dt, the model is that N increases by an amount dNt =
rNtdt. Calculus allows us to express Nt as Nt = N0e

rt. The “Ito’s lemma” of
ordinary calculus gives df(t) = f ′(t)dt. For us, this is d(N0e

rt = rN0e
rt = rNt.

Here is a similar example for a stochastic process Xt that could model a stock
price. We suppose that in the time interval dt that Xt changes by a random
amount whose size is proportional to Xt. In stock terms, the probability to go
from 100 to 102 is the same as the probability to go from 10 to 10.2. A simple
way to do this is to make dX proportional to Xt and dWt, as in dXt = σXtdWt.
The differentials are all forward looking, so dXt = Xt+dt − Xt and dWt =
Wt+dt−Wt with dt > 0. The Ito lemma for the Ito calculus is (using subscripts
for partial derivatives) d(f(Wt, t)) = fw(Wt, t)dWt+ 1

2fw(Wt, t)dt+ft(Wt, t)dt.
The solution is f(w, t) = x0e

σw−σ2t/t. We check this using fw = σf , fww = σ2

2 f ,
and ft = −σ2

2 f . Therefore, if Xt = f(Wt, t), then dXt = σXtdWt as desired.
Ito’s lemma for this week is about the time derivative of stochastic processes

f(Wt, t), where f(w, t) is a differentiable function of its arguments. The Ito
differential is

df = f(Wt+dt, t+ dt)− f(Wt, t) .

This is the change in f over a small increment of time dt. If you integrate the
Ito differential of f , you get the change in f . If Xt is any process, then

Xb −Xa =
∫ b

a

dXs . (1) eq:di
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This is the way to show that something is equal to dXt, you put your differential
on the right, integrate, and see whether you get the left side. In particular, the
differential formula dXt = µtdt+ σtdWt, means that

Xb −Xa =
∫ b

a

µs ds+
∫ b

a

σs dWs . (2) eq:dii

The first integral on the right is an ordinary integral. The second is the Ito
integral from last week. The Ito integral is well defined provided σt is an adapted
process.

Ito’s lemma for Brownian motion is

df(Wt, t) = ∂wf(Wt, t)dWt +
1
2
∂2
wf(Wt, t)dt+ ∂tf(Wt, t)dt . (3) eq:ild

An informal derivation starts by expanding df in Taylor series in dW and dt up
to second order in dW and first order in dt,

df = ∂wf dW +
1
2
∂2
wf (dW )2 + ∂tf dt .

We get (
eq:ild
3) from this using (dWt)2 = dt. The formula dWt)2 = dt cannot be

exactly true, because (dWt)2 is random and dt is not random. It is true that
E
[

(dWt)2|Ft
]

= dt, but Ito’s lemma is about more than expectations.
The real theorem of Ito’s lemma, in the spirit of (

eq:dii
2), is

f(Wb, b)− f(Wa, a)

=
∫ b

a

∂wf(Wt, t)dWt +
∫ b

a

(
1
2
∂2
wf(Wt, t) + ∂tf(Wt, t)

)
dt (4) eq:ili

Everything here is has been defined. The second integral on the right is an
ordinary Riemann integral. The first integral on the right is the Ito integral
defined last week. We give an informal proof of this in Section

sec:p
2.

You see the convenience of Ito’s lemma by re-doing the example from last
week

Xt =
∫ t

0

WsdWs .

A first guess from ordinary calculus might be Xt = 1
2W

2
t . Let us take the Ito

differential of 1
2W

2
t . This is df(Wt, t), where f(w, t) = 1

2w
2, and ∂wf(w, t) = w,

and 1
2∂

2
wf(w, t) = 1

2 . Therefore, (
eq:ild
3) gives

d

(
1
2
W 2
t

)
= WtdWt +

1
2
dt .

Therefore,

1
2
W 2
t −

1
2
W 2

0 =
∫ t

0

WsdWs +
1
2

∫ t

0

ds

=
∫ t

0

WsdWs +
1
2
t .
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You just rearrange this and recall that W0 = 0, and you get the formula from
Week 5:

Xt =
∫ t

0

WsdWs =
1
2
W 2
t −

1
2
t .

This is quicker than the telescoping sum stuff from Week 5.
Ito’s lemma gives a convenient way to figure out the backward equation for

many problems. Ito’s lemma and the martingale (mean zero) property of Ito
integrals work together to tell you how to evaluate conditional expectations.
Consider the Ito integral

XT =
∫ T

0

gsdWs .

Then

E[XT | Ft] = E
[ ∫ t

0

gsdWs | Ft
]

+ E

[∫ T

t

gsdWs | Ft

]
The first term is completely known at time t, so the expectation is irrelevant.
The second term is zero, because dWs is in the future of gs and Ft. Therefore

E

[∫ T

0

gsdWs | Ft

]
=
∫ t

0

gsdWs .

Now suppose f(w, t) is the value function

f(w, t) = E[V (WT ) |Wt = w] .

The integral form of Ito’s lemma (
eq:ili
4)

V (WT )− f(Wt, t) =
∫ T

t

df(Ws, s)

=
∫ T

t

∂wf(Ws, s)dWs +
∫ T

t

(
∂tf(Ws, s) +

1
2
∂2
wf(Ws, s)

)
ds

Take the conditional expectation in Ft. Looking on the left side, we have

E[V (WT ) | Ft] = f(Wt, t) ,

which is an equivalent definition of the value function. Clearly, E[ f(Wt, t) | Ft] =
f(Wt, t). Therefore you get zero on the left. The conditional expectation of the
Ito integral on the right also vanishes, as we said just above. Therefore

E

[∫ T

t

(
∂tf(Ws, s) +

1
2
∂2
wf(Ws, s)

)
ds | Ft

]
= 0 .

The simplest way for this to happen is for the integrand to vanish identically.
The equation you get by setting the integrand to zero is

∂tf +
1
2
∂2
wf = 0 .
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This is the backward equation we derived in Week 4. The difference here is that
you don’t have to think about what you’re doing here. All the hard thinking
(the mathematical analysis) goes into Ito’s lemma. Once you are liberated
from thinking hard, you can easily derive backward equations for many other
situations.

2 Informal proof of Ito’s lemma
sec:p

The theorem of Ito’s lemma is the integral formula (
eq:ili
4). We will prove it under

the assumption that f(w, t) is a differentiable function of its arguments up to
third derivatives. We assume all mixed partial derivatives up to that order
exist and are bounded. That means

∣∣∂3
wf(w, t)

∣∣ ≤ C, and
∣∣∂2
t f(w, t)

∣∣ ≤ C, and∣∣∂2
w∂tf(w, t)

∣∣ ≤ C, and so on.
We use the notation of Week 5, with ∆t = 2−m, and tj = j∆t. The change

in any quantity from tj to tj+1 is ∆(∗∗)j . We use the subscript j for tj , as in
Wj instead of Wtj . For example, ∆fj = f(Wj + ∆Wj , tj + ∆t)− f(Wj , tj). In
this notation, the left side of (

eq:ili
4) is

f(Wb, b)− f(Wa, a) ≈
∑

a≤tj<b

∆fj . (5) eq:dfs

The right side is a telescoping sum, which is equal to the left side if b = n∆t
and a = m∆t for some integers m < n. When ∆t and ∆W are small, there is
a Taylor series approximation of ∆fj . The leading order terms in the Taylor
series combine to form the integrals on the right of (

eq:ili
4). The remainder terms

add up to something that goes to zero as ∆t→ 0.
Suppose w and t are some numbers and ∆w and ∆t are some small changes.

Define ∆f = f(w + ∆w, t + ∆t) − f(w, t). The Taylor series, up to the order
we need, is

∆f = ∂wf(w, t)∆w + 1
2∂

2
wf(w, t)∆w2 + ∂tf(w, t)∆t (6) eq:ts

+O
(∣∣∆w3

∣∣)+O (|∆w|∆t) +O
(∣∣∆t2∣∣) . (7) eq:et

The big O quantities on the second line refer to things bounded by a multiple
of what’s in the big O, so O

(∣∣∆w3
∣∣) means: “some quantity Q so that there

is a C with |Q| ≤ C
∣∣∆w3

∣∣”. The error terms on the second line correspond
to the highest order neglected terms in the Taylor series. These are (constants
omitted) ∂3

wf(w, t)∆w3, and ∂w∂tf(w, t)∆w∆t, and ∂2
t f(w, t)∆t2. The Taylor

remainder theorem tells us that if the derivatives of the appropriate order are
bounded (third derivatives in this case), then the errors are on the order of the
neglected terms.

The sum on the right of (
eq:dfs
5) now breaks up into six sums, one for each term

on the right of (
eq:ts
6) and (

eq:et
7):∑

a≤tj<b

∆fj = S1 + S2 + S3 + S4 + S5 + S6 .
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We consider them one by one. It does not take long.
The first is

S1 =
∑

a≤tj<b

∂wf(Wj , tj)∆Wj .

In the limit ∆t→ 0 (more precisely, m→∞ with ∆t = 2−m), this converges to∫ b

a

∂wf(Ws, s)dWs .

The second is
S2 =

∑
a≤tj<b

1
2∂

2
wf(Wj , tj)∆W 2

j . (8) eq:is

This is the term in the Ito calculus that has no analogue in ordinary calculus.
We come back to it after the others. The third is

S3 =
∑

a≤tj<b

∂tf(Wj , tj)∆t .

As ∆t→ 0 this one converges to∫ b

a

∂tf(Ws, s) ds .

The first error sum is

|S4| ≤ C
∑

a≤tj<b

∣∣∆W 3
j

∣∣ .
This is random, so we evaluate its expected value. We know from experience
that E

[ ∣∣∆W 3
j

∣∣] scales like ∆t3/2, which is one half power of ∆t for each power
of ∆W . Therefore

E[S4] ≤ C
∑

a≤tj<b

∆t3/2 = C∆t1/2
∑

a≤tj<b

∆t = C(b− a)∆t1/2 .

The second error term goes the same way, as E[ |∆Wj |∆t] also scales as ∆t3/2.
The last error term has

|S6| ≤ C
∑

a≤tj<b

∆t2 = C(b− a)∆t .

It comes now to the sum (
eq:is
8). The

(
∆W 2

j

)
↔ ∆t connection suggests we

write
(∆Wj)

2 = ∆t+Rj ,

Clearly

E[Rj | Fj ] = 0 , and E
[
R2
j | Fj

]
= var(Rj | Fj) = 2∆t2 .
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Now,

S2 =
∑

a≤tj<b

1
2∂

2
wf(Wj , tj)∆t +

∑
a≤tj<b

1
2∂

2
wf(Wj , tj)Rj

= S2,1 + S2,2 .

The first term converges to the Riemann integral∫ b

a

1
2∂

2
wf(Ws, s) ds .

The second term converges to zero almost surely. We see this using the now
familiar trick of calculating E

[
S2

2,2

]
. This becomes a double sum over tj and

tk. The off diagonal terms, the ones with j 6= k vanish. If j > k, we see this as
usual:

E
[ (

1
2∂

2
wf(Wj , tj)Rj

) (
1
2∂

2
wf(Wk, tj)Rk

)
| Fj

]
= E[Rj | Fj ]

1
4
∂2
wf(Wj , tj)∂2

wf(Wk, tj)Rk ,

and the right side vanishes. The conditional expectation of a diagonal term is

1
4

E
[ (
∂2
wf(Wj , tj)Rj

)2 | Fj] =
1
4
(
∂2
wf(Wj , tj)

)2
E
[
R2
j | Fj

]
=

1
2
(
∂2
wf(Wj , tj)

)2
∆t2

These calculations show that in E
[
S2

2,2

]
, the diagonal terms, which are the only

non-zero ones, sum to ≤ C(b− a)∆t.
The “almost surely” statement follows from the Borel Cantelli lemma, as

last week. The abstract theorem is that if Sn is a family of random variables
with

∞∑
n=1

E
[
S2
n

]
<∞ , (9) eq:bc

then Sn → 0 as n→∞ almost surely. This is because (
eq:bc
9) implies that S2

n → 0
as n → ∞. If S2

n → 0 then Sn → 0 also. We know S2
n → 0 almost surely

because S2
n ≥ 0 and if an infinite sum of positive numbers is convergent, then

the terms go to zero. Our sum is convergent almost surely, so the sum is finite
almost surely.

3 Backward equations
sec:be

Suppose V (w) is a running reward function and consider

f(w, t) = Ew,t

[∫ T

t

V (Ws)ds

]
. (10) eq:rr
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As in the Introduction, this may be written in the equivalent form

f(Wt, t) = E

[∫ T

t

V (Ws)ds | Ft

]
. (11) eq:rr2

Ito’s lemma gives

f(WT , T )−f(Wt, t) =
∫ T

t

fw(Ws, s)dWs+
∫ T

t

(
1
2
fww(Ws, s) + ft(Ws, s)

)
ds .

The definition (
eq:rr
10) gives f(WT , T ) = 0. Therefore, as in the Introduction,

f(Wt, t) = −E

[∫ T

t

(
1
2
fww(Ws, s) + ft(Ws, s)

)
ds | Ft

]
.

We set the two expressions for f equal:

E

[∫ T

t

V (Ws)ds | Ft

]
= −E

[∫ T

t

(
1
2
fww(Ws, s) + ft(Ws, s)

)
ds | Ft

]
.

The natural way to achieve this is to set the integrands equal to each other,
which gives

1
2
fww(w, s) + ft(w, s) + V (w) = 0 . (12) eq:berr

The final condition for this PDE is f(w, T ) = 0. The PDE then determines the
values f(w, s) for s < T . Now that we have guessed the backward equation, we
can show that it is right by Ito differentiation once more. If f(w, s) satisfies the
backward equation (

eq:berr
12), then f(Wt, t) satisfies (

eq:rr2
11).

Here is a slightly better way to say this. From ordinary calculus, we get

d

(∫ T

t

V (Ws)ds | Ft

)
= −V (Wt)dt .

We pause to consider this. The stochastic process

Xt =
∫ T

t

V (Ws)ds

is a differentiable function of t. Its derivative with respect to t follows from the
ordinary rules of calculus, the fundamental theorem in this case

dX

dt

∫ T

t

V (Ws)ds = −V (Wt) .

This is true for any continuous function Wt whether or not it is random. Con-
ditioning on Ft just ties down the value of Wt. From Ito’s lemma, any function
f(w, s) satisfies

E[ df(Wt, t) | Ft] =
(

1
2
fww(Ws, s) + ft(Ws, s)

)
dt .
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Taking expectations on both sides of (
eq:rr2
11) gives(

1
2
fww(Ws, s) + ft(Ws, s)

)
dt = −V (Wt)dt ,

which is the backward equation (
eq:berr
12).

Consider the specific example

f(w, t) = Ew,t

[∫ T

t

W 2
s dt

]
.

We could find the solution by direct calculations, since there is a simple formula
Ew,t

[
W 2
s

]
= Ew,t

[
W 2
t + (Ws −Wt)

2
]

= w2 +(s− t). Instead we use the ansatz

method. Suppose the solution has the form f(w, t) = A(t)w2 +B(t). It is easy
to plug into the backward equation

1
2
fww + ft + w2 = 0

and get
2A+ Ȧw2 + Ḃ + w2 = 0 .

This gives Ȧ = −1. Since f(w, T ) = 0, we have A(T ) = 0 and therefore
A(t) = T−t. Next we have Ḃ = 2T−2t, so B = 2Tt−t2+C. The final condition
B(T ) = 0 gives C = −T 2. The simplified form is B(t) = 2Tt − t2 − T 2 =
−(T − t)2. The solution is f(w, t) = (T − t)w2 −−(T − t)2.
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