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1 Introduction to the material for the week

This week we discuss a random process Xt that is a diffusion process. A diffusion
process has an infinitesimal mean, or drift, which is a(x, t). The process is
supposed to satisfy

E[ ∆Xt | Ft] = a(Xt)∆t+O(∆t2) . (1)

Here, ∆t > 0 and ∆X = Xt+∆t − Xt is the forward looking change. We also
write the differential version dXt = Xt+dt −Xt and

E[ dXt | Ft] = a(Xt)dt .

A diffusion also has an infinitesimal variance, µ(x, t). If Xt is a one dimensional
process, it should satisfy

E
[

∆X2
t | Ft

]
= µ(Xt, t)∆t+O(∆t2) . (2)

The differential version of this is

E
[
dX2

t | Ft

]
= µ(Xt, t)dt .

For a multidimensional process, the infinitesimal mean is a vector and the
infinitesimal variance is a matrix. For an n dimensional process, a(x, t) ∈ Rn,
and µ(x, t) is a symmetric positive semi-definite d× d matrix. The infinitesimal
mean formula (1) does not change. The infinitesimal variance formula becomes

E
[

(dXt) (dXt)
t | Ft

]
= µ(Xt, t)dt .

This just says that µ(Xt, t)dt is the variance-covariance matrix of dXt.
The last part of the definition is that a diffusion process must have continuous

sample paths. This means that Xt must be a continuous function of t. For
example, the simple rate one Poisson process Nt satisfies (1) with a = 1 and
(2) with µ = 1, as we saw in Assignment 5. In practice, you show that sample
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paths are continuous by finding a moment of dX that scales like a higher power
of dt. Usually it is

E
[

∆X4
t | Ft

]
= O(∆t2) , (3)

the fourth moment scales like ∆t2. The Poisson process has

E
[

∆N4
t | Ft

]
= ∆t+O(∆t2) .

For the Poisson process, if dN 6= 0, then dN = 1. Therefore, (forNt conditioning
is irrelevant) E[ ∆Np

t | Ft] = P(dN 6= 0) = dt for any moment power p.
Diffusion processes come up as models of stochastic processes. If you want

to build a diffusion model of a process, you need to figure out the infinitesimal
mean and variance. You also must find a higher moment that scales like a higher
power of ∆t, or find some other reason for Xt to be a continuous function of t.
We will see examples of this kind of reasoning.

The quadratic variation of Xt measures how much noise the path Xt expe-
rienced up to time t. It is written in many ways, and we write it as [X]t. The
definition is, in our usual notation,

[X]t = lim
∆t→0

∑
tj<t

(∆Xj)2
. (4)

We give a sort-of proof using ∆t = 2−m and m → ∞. The sort-of proof is
supposed to prove that this limit exists almost surely. The limit is given by

[X]t =
∫ t

0

µ(Xs, s) ds . (5)

This looks a little like the Ito isometry formula, but there are differences. The
Ito isometry formula is an equality of expected values. But this is a pathwise
identity, one that holds for almost every path X. Both sides of (5) are functions
of the path Xt. Almost surely, for any path X[0,T ], the limit on the right of (4)
is equal to the right side of (5).

The quadratic variation formula is related to the Ito’s lemma for general
diffusions. This becomes clear if you write the left side of (4) as an integral to
get the informal expression

[X]t =
∫ t

0

(dXs)2
.

The identity (5) would be∫ t

0

(dXs)2 =
∫ t

0

µ(Xs) ds .

Taking the differential with respect to t gives (dXt)
2 = µ(Xt) dt. The truth of

this informal formula is the same as the truth of the Brownian motion version:
It is not true in the differential form, but gives a true formula when you integrate
both sides.
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We learn about diffusions by finding things about them we can calculate or
compute. An important tool in this is the general version of Ito’s lemma. We
can guess that Ito’s lemma should be

df(Xt, t) = fx(Xt, t) dXt +
1
2
fxx(Xt, t) (dXt)

2 + ft(Xt, t) dt

= fx(Xt, t) dXt +
1
2
fxx(Xt, t)µ(Xt, t) dt+ ft(Xt, t) dt . (6)

To show this is true, we need to prove that

f(XT , T )− f(X0, 0)

=
∫ T

0

(
1
2
fxx(Xt, t)µ(Xt, t) + ft(Xt, t)

)
dt+

∫ T

0

fx(Xt, t) dXt . (7)

The last term on the right is the Ito integral with respect to a general diffusion,
what also needs a definition. It looks like we have lots to do this week.

There are backward equations associated to general diffusions. One of them
is for the final time payout value function

f(x, t) = Ex,t[V (XT )] . (8)

This is
∂tf +

1
2
µ(x, t)∂2

xf + a(x, t)∂xf = 0 . (9)

There are other backward equations for other quantities defined in terms of X.
We can derive this directly using the tower property, or we can do it using Ito’s
lemma (6). There are natural versions of quadratic variation and backward
equations for multi-variate diffusions processes. These involve the infinitesimal
covariance matrix µ.

2 Some diffusion processes

This section explains how to make a diffusion model for a random process. In
future weeks we will see how to do this as an Ito differential equation. That is
very appealing notationally, but the present method is more fundamental.

2.1 Geometric Brownian motion and geometric random
walk

2.2 Ornstein Uhlenbeck and the urn process

3 Ito calculus for general diffusions

This section has a full agenda, but the items should start to seem routine as
we go through them. Most of the arguments are just more general versions of
arguments from last week.
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3.1 Backward equation

We start with the backward equation for general diffusions. The argument
here is more direct than the argument we gave for the backward equation for
Brownian motion. The earlier argument is more “efficient”, in that it involves
less writing. But this one is straightforward, and makes it clear what is behind
the equation. It also shows how the technical condition (3) plays a crucial role.

A simple backward equation governs the value function for a state dependent
“payout” at a specific time. The payout function is V (x). The payout time is
T . At that time, you get payout V (XT ). For t < T , there is the conditional
expected value of XT , conditional on the information in Ft. Since Xt is a
Markov process, is expected value is the same as the conditional expectation
given the value on Xt. This conditional expected value is f(x, t) given by (8).
An equivalent definition is

f(Xt, t) = E[V (XT ) | Ft] .

Suppose s is a time intermediate between t and T . Then Ft ⊆ Fs, and the
tower property gives

f(Xt, t) = E[ E[V (XT ) | Fs] | Ft] = E[ f(Xs, s) | Ft] .

This may be restated as

f(x, t) = Ex,t[ f(Xs, s)] , (10)

which should hold whenever t ≤ s ≤ T .
The backward equation (9) is an expression of the tower property. We derive

it from (10) taking s = t + ∆t. The calculations require that f be sufficiently
differentiable, which we assume but do not prove. The ingredients are: (i) the
formulas (1) and (2) that characterize Xt, (ii) Taylor expansion of f with the
usual remainder bounds, and (iii) the technical condition (3) that makes Xt

a continuous function of t. We write Xt+∆t = x + ∆X and make the usual
Taylor expansions. To simplify the writing, we make two conventions. Partial
derivatives are written as subscripts. We put in the arguments only if they are
not (x, t). For example, fx means ∂xf(x, t).

f(Xt+∆t, t+ ∆t) = f(x+ ∆X, t+ ∆t)

= f + fx∆X + 1
2fxx∆X2 + ft∆t

+O(|∆X|3) +O(|∆X|∆t) +O(∆t2) .

We briefly postpone the argument that

E
[
|∆X|3 | Ft

]
= O(∆t3/2) , (11)
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but it is consistent with the scaling ∆X ∼ ∆t1/2. From (10) we find

f(x, t) = Ex,t[ f(Xt+∆t, t+ ∆t)]

= Ex,t[ f ] + Ex,t[ fx∆X] + Ex,t

[
fxx∆X2

]
+ Ex,t[ ft∆t]

+ Ex,t

[
O(|∆X|3)

]
+ Ex,t[O(|∆X|∆t)] + Ex,t

[
O(∆t2)

]
= f + fx Ex,t[ ∆X] + 1

2fxx Ex,t

[
∆X2

]
+ ft∆t+O(∆t3/2)

0 = fx a(x)∆t+ 1
2fxx µ(x)∆t+ ft∆t+O(∆t3/2)

0 = afx + µ 1
2fxx + ft +O(∆t1/2) .

If you take ∆t→ 0, you get the backward equation (9).
The bound (11) is a consequence of (3). There is a trick to show this

using the Cauchy Schwarz inequality E[Y U ] ≤ E
[
Y 2
]1/2 E

[
U2
]1/2. If you

take Y = ∆X2 and U = 1, the Cauchy Schwarz inequality gives E
[

∆X2
]
≤

E
[

∆X4
]1/2 E

[
12
]1/2 ≤ C

(
∆t2

)1/2 = C∆t. Use ∆X3 = ∆X2∆X in Cauchy

Schwarz, and you get E
[
|∆X|3

]
≤ E

[
∆X4

]1/2 E
[

∆X2
]1/2 ≤ C∆t3/2. (Those

of you who know Hölder’s inequality or Jensen’s inequality may find a shorter
derivation of this ∆t3/2 bound.)

This may seem mysterious, but there is a reason it should work. Suppose
we think ∆X scales as ∆X ∼ ∆t1/2. Then we would be inclined to believe
that E

[
∆X4

]
∼
(
∆t1/2

)4
= ∆t2. Moreover, we might come to believe that

∆X ∼ ∆t1/2 from the expected square E
[

∆X2
]
≈ µ∆t. But this is not a

mathematical theorem. We already saw that the Poisson process is a coun-
terexample: E

[
∆N2

]
≈ ∆t but E

[
∆N4

]
∼ ∆t also, not ∆t2. This says that

E
[

∆N4
]

is much larger than it would be if ∆N scaled with ∆t in a simple
way you could discover from the mean square. What goes wrong is that ∆N
has fat tails. The expected value of ∆N2 does not come from typical values of
∆N . Indeed, the typical value is ∆N = 0. Instead E

[
∆N2

]
is determined by

rare events in which ∆N is much larger than ∆t1/2. The probability of such
a rare event is approximately ∆t, when ∆t is small. The tails of a probability
distribution give the probability that the random variable is much larger (or
smaller) than typical values. A large (or fat) tail indicates a serious probability
of a large value. If a random variable has thin tails, then the expected values
of higher moments scale as you would expect from lower moments. For a diffu-
sion process, E

[
∆X4

]
scales as you would expect from ∆X ∼ ∆t1/2, but not a

Poisson process.
The Cauchy Schwarz inequality allowed us to bound lower moments of ∆X in

terms of higher moments. If E
[

∆X4
]

= O(∆t2), then E
[
|∆X|3

]
= O(∆t3/2).

But E
[
|∆X|3

]
= O(∆t3/2) does not imply that E

[
∆X4

]
= O(∆t2).
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3.2 Integration and Ito’s lemma with respect to dXt

The stochastic integral with respect to dXt is defined as last week. Suppose gt

is a progressively measurable process that satisfies

E
[

(gt+∆t − gt)
2 | Ft

]
≤ C∆t . (12)

Define the Riemann sum approximations to the stochastic integral as

Y
(m)
t =

∑
tj<t

gtj

(
Xtj+1 −Xtj

)
. (13)

As usual, ∆t = 2−m and tj = j∆t. Precisely as before, we show that the limit∫ t

0

gs dXs = Yt = lim
m→∞

Y
(m)
t (14)

exists almost surely. The reason is the same (write “≈” instead of “=” only
because the final time t might split an interval):

Y
(m+1)
t − Y (m)

t ≈
∑
tj<t

(
Xtj+1 −Xt

j+ 1
2

)(
gt

j+ 1
2
− gtj

)
Therefore

E
[(
Y

(m+1)
t − Y (m)

t

)2
]
≤ C∆t = C2−m ,

so (using Cauchy Schwarz again)

E
[ ∣∣∣Y (m+1)

t − Y (m)
t

∣∣∣] ≤ C∆t1/2 = C2−m/2 .

From here, the Borel Cantelli lemma implies that
∞∑

m=1

∣∣∣Y (m+1)
t − Y (m)

t

∣∣∣ <∞ almost surely ,

which then implies that the limit (14) exists almost surely.
Ito’s lemma is a similar story. We want to prove the formula (6) for a

sufficiently smooth function f . Use our standard notation: fj = f(Xtj
, tj), and

Xj = Xtj
, and ∆Xj = Xj+1 − Xj . The “math” is telescoping representation

followed by Taylor expansion

f(Xt, t)− f(x0, 0) ≈
∑
tj<t

[fj+1 − fj ]

=
∑
tj<t

[f(Xj + ∆Xj , tj + ∆t)− f(Xj , tj)]

=
∑
tj<t

[
fx(Xj , tj)∆Xj + 1

2fxx(Xj , tj)∆X2
j + ft(Xj , tj)∆t

]
+
∑
tj<t

[
O
(
|∆Xj |3

)
+O (|∆Xj |∆t) +O

(
∆t2

)]
= S1 + S2 + S3 + S4 + S5 + S6 .
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The numbering of the terms is the same as last week. We go through them one
by one, leaving the hardest one, S2, for last.

The first one is

S1 =
∑
tj<t

fx(Xj , tj)∆Xj →
∫ t

0

fx(Xs, s) dXs as m→∞, almost surely .

The third one is

S3 =
∑
tj<t

ft(Xj , tj)∆t→
∫ t

0

ft(Xs, s) ds as m→∞ .

For some reason, people do not feel the need to say “almost surely” when it’s
an ordinary Riemann sum converging to an ordinary integral. The first error
term is S4. Our Borel Cantelli argument shows that the error terms go to zero
almost surely as m→∞. For example, using familiar arguments,

E[S4] ≤ C
∑
tj<t

E
[
|∆X|3

]
≤ C

∑
tj<t

∆t3/2 = Ct∆t1/2 = Ct2−m/2 .

The sum over m is finite.
Finally, the Ito term:

S2 = 1
2

∑
tj<t

fxx(Xj , tj)µ(Xj)∆t+ 1
2

∑
tj<t

fxx(Xj , tj)
[
∆X2

j − µ(Xj)∆t
]

= S2,1 + S2,2 .

The first sum, S2,1, converges to an integral that is the last remaining part of
(6). The second sum goes to zero almost surely as m → ∞, but the argument
is more complicated than it was for Brownian motion. Denote a generic term
in S2,2 as

Rj = fxx(Xj , tj)
[
∆X2

j − µ(Xj)∆t
]
.

With this, S2,2 =
∑
Rj , and

E
[
S2

2,2

]
=
∑
tj<t

∑
tk<t

E[RjRk] .

The diagonal part of this sum is ∑
tj<t

E
[
R2

j

]
.

But R2
j ≤ C

(
∆X4

j + ∆t2
)
, so the diagonal sum is OK. The off diagonal sum

was exactly zero in the Brownian motion case because there was no O(∆t2) on
the right of (2). The off diagonal sum is

2
∑
tk<t

 ∑
tk<tj<t

E[RjRk]

 .
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The inner sum is on the order of ∆t, because

E[RjRk] = E[ E[Rj | Fj ]Rk] ≤ O(∆t2) |Rk| ,

so ∑
tk<tj<t

E[RjRk] ≤

∑
tj>tk

O(∆t2)

 |Rk| ≤ Ct∆t |Rk| .

You can see from the definition that E[ |Rk|] = O(∆t). Therefore, the outer
sum is bounded by

2
∑
tk<t

CtO(∆t2) = CtO(∆t) ≤ Ct2−m .

This is what Borel and Cantelli need to show S2,2 → 0 almost surely.

3.3 Quadratic variation

We can apply the results of subsection 3.2 to get the quadratic variation. Look
at

Yt =
∫ t

0

Xs dXs .

The Ito calculus of subsection 3.2 allows us to find a formula for Yt. On the
other hand, the telescoping sum trick from last week allows us to express Yt in
terms of the quadratic variation.

A naive guess would make Yt equal to 1
2X

2
t . But Ito’s lemma (6) applied to

f(x) = 1
2x

2, with fx = x and fxx = 1 gives

d
[

1
2X

2
t

]
= XtdXt + 1

2µ(Xt)dt .

Integrating this gives

1
2X

2
t − 1

2x
2
0 =

∫ t

0

Xs dXs + 1
2

∫ t

0

µ(Xs) ds .

Rearranging puts this in the form∫ t

0

Xs dXs = 1
2X

2
t − 1

2x
2
0 − 1

2

∫ t

0

µ(Xs) ds . (15)

This is consistent with the formula we had earlier for Brownian motion.
The direct approach to Yt starts from the trick

Xj = 1
2 (Xj+1 +Xj)− 1

2 (Xj+1 −Xj)

The Riemann sum approximation to Yt is∑
tj<t

Xj (Xj+1 −Xj) = 1
2

∑
tj<t

(Xj+1 +Xj)(Xj+1 −Xj) − 1
2

∑
tj<t

(Xj+1 −Xj)(Xj+1 −Xj) .
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The first sum on the right is

1
2

∑
tj<t

(X2
j+1 −X2

j ) ≈ 1
2X

2
t − 1

2x
2
0 .

The second sum is
1
2

∑
tj<t

(Xj+1 −Xj)2 .

In the limit ∆t→ 0, this converges to the quadratic variation [X]t. Comparing
this to (15) gives the formula (5).
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