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1 Introduction to the material for the week

Suppose Xt is a stochastic process and S is some set. The hitting time is the
first time Xt hits S.

τ = min {t | Xt ∈ S} . (1)

This definition makes sense without extra mathematical technicalities if Xt is
a continuous function of t and S is a closed set.1 In that case, Xτ ∈ S and
Xt /∈ S if t < τ . Many practical problems may be formulated using hitting
times. When does something break? How long does it take to travel a given
distance?

A hitting time is an important example of the more general idea of a stopping
time. A stopping time is a time that depends on the path X[0,T ], which makes
it a random variable. What distinguishes a stopping time is that you know at
time t whether τ ≤ t. If Ft is the filtration corresponding to Xt, then

{τ ≤ t} ∈ Ft . (2)

A hitting time is a stopping time because at time t you know all the values Xs

for s ≤ t, so you know whether Xs ∈ S for some s ≤ t. There are stopping
times that are not hitting times. For example, you could stop the first time Xt

has been inside S for a given amount of time.
Some random times are not stopping times. For example, take the maximum

time rather than the minimum time in (1). This would be the “last exit time”
for S. At time t, you may not know whether Xs will enter S for some s > t, so
you do not know whether τ ≤ t.

Stopping times give a way to model optimal decision problems related to the
stochastic process Xt. An optimal decision problem is the problem of finding the
function τ(X[0,T ] that maximizes or minimizes some performance criterion. The
early exercise problem for American style stock options is an optimal stopping

1The set S is closed if S includes all its limit points. If xn ∈ S and xn → x as n → ∞,
then x ∈ S. For example, in one dimension, S = {0 < x < 1} is not closed because xn = 1/n
converges to x = 0, but 0 /∈ S.
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problem. Many clinical drug trials have stopping criteria that end the trial if
the drug quickly shows itself to be helpful, or dangerous.

Consider the problem of stopping a Brownian motion at the largest value
possible

max
τ(W[0,T ])

E[Wτ ] . (3)

One possible solution would be to take the actual maximum value:

Wτ = max
0≤t≤T

Wt .

But this is not a stopping time. Even if Wt is the largest value you have seen so
far, you have no way of knowing whether Ws > Wt for some s > t. (Correction:
You do know. Almost surely there is an s ∈ (t, T ) with Ws > Wt.) The optimal
decision problem would be to restrict the class of random times to those that
are stopping times. You have to say at time t whether to stop at t or keep going.

Many hitting time problems and optimal decision problems may be solved
using partial differential equations. For hitting time problems, you solve the
forward or backward equation in the complement of S and specify a boundary
condition at the boundary of S. Many optimal decision problems have the struc-
ture that the optimal stopping time is given by an optimal decision boundary.
This is a set St so that τ is the first time Xt ∈ St.

A stochastic process is a martingale if, for any s ≥ t,

E[Xs | Ft] = Xt . (4)

If Xt is a diffusion process, then it is a martingale if the drift coefficient is equal
to zero. That is

E[ dXt | Ft] = 0 .

A general theorem of Doob states that if ft is an adapted process and if f and
X are not too “wild”, then

Yt =
∫ t

0

fs dXs

is also a martingale. In some sense this is obvious, because the drift coefficient
of Y is

E[ dYt | Ft] = ftE[ dXt | Ft] = 0 .

if X is a martingale. The value ft is known at time t if ft is adapted. How wild
is too wild? That’s not a question for this course. But we give some examples
where it is true and false.

The Doob stopping time theorem is a special case of the general martingale
theorem. If τ is a stopping time that satisfies τ ≤ T (almost surely), then

E[Xτ ] = x0 . (5)

To prove this, let Yt be the stopped process: Yt = Xt if t ≤ τ and Yt = Xτ for
t ≥ τ (the definitions agree for t = τ). If τ ≤ T , then YT = Xτ . The trick is
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to write Y as a stochastic integral involving X. The integrand is the switching
function ft = 1 for t ≤ τ and ft = 0 for t > τ . This is an adapted function –
you can determine the value of ft knowing only X[0,t]. If

Yt = x0 +
∫ t

0

fsdXs ,

then Yt = Xt if t ≤ τ and Yt is constant for t > τ . The Doob martingale
theorem implies that Yt is a martingale. Therefore

E[YT ] = E[Xτ ] = x0 .

2 Backward equation boundary conditions

There are many questions involving hitting times for a set S that can be an-
swered using a value function f(x, t). The PDE for f depends on the process
X, but not on S. The set S determines boundary conditions that f must satisfy.
If you do it right, f will be completely determined by the final condition, the
boundary conditions, and the PDE.

The PDE involves the generator of the process Xt, which is a differential op-
erator. For a given t, think of f(·, t) as an abstract vector. For a one dimensional
diffusion, L acts on the vector f as

Lf(x, t) =
1
2
µ(x, t)∂2

xf(x, t) + a(x, t)∂xf(x, t) . (6)

The generator L does not act on the t variable, so t is just a parameter that
says which function f(·, t) the generator is acting on.2

For example, if X is an Ornstein Uhlenbeck process with parameters σ2 and
γ, then µ = σ2 and a = −γx, so

Lf =
1
2
σ2∂2

xf − γx∂xf .

If f(x, t) = 3x2 − tx+ t2, then Lf = 3σ2 − 6γx2 + γtx. The operator L may be
expressed as

L =
1
2
µ(x, t)∂2

x + x(x, t)∂x . (7)

Then applying L to a function f is given by the expression (6). Mathematicians
say that the operator L “sends f to Lf”, or that f “goes to” Lf :

f
L−→ Lf =

1
2
σ2∂2

xf − γx∂xf .

For example, one might write

e−x
2/2 ∂2

x−→
(
x2 − 1

)
e−x

2/2 .

2A famous joke defines a parameter as a variable constant.

3



Suppose the diffusion is multi-dimensional. Let n be the number of compo-
nents of Xt. The generator in this case is

Lf =
1
2

n∑
i=1

n∑
j=1

µij(x, t)∂xi
∂xj

f +
n∑
i=1

ai(x, t)∂xi
f . (8)

We will do some multi-dimensional examples at some point.
Here is a simple example. Let Xt be a one dimensional diffusion with x0 = 1.

Let V (x) be a payout function, and suppose you get payout V (XT ) only if
Xt > 0 for 0 ≤ t ≤ T . We need some notation for the mathematical formulation.
The hitting time is τ = min {t | X0 = 0}. The event we need to describe is the
event that τ ≥ T . The indicator function of this event is 1τ≥T (X[0,T ]), which
has the values

1τ≥T (X[0,T ]) =
{

1 if τ ≥ T
0 if τ < T.

(This is also called characteristic function and written χτ≥T . We use the term
“indicator function” because in probability, characteristic function can refer to
Fourier transform.) In this notation, the payout V (XT ) 1τ≥T (X[0,T ]). This is a
function that is equal to V (XT ) if τ ≥ T and is equal to zero otherwise. The
expected payout is

E
[
V (XT ) 1τ≥T (X[0,T ])

]
. (9)

The PDE approach to calculating the expected payout (9) is to define a
value function that satisfies a backward equation with boundary conditions.
The value function that works is

f(x, t) = Ex,t
[
V (XT ) 1τ≥T (X[0,T ]) | τ ≥ t

]
. (10)

If we can evaluate the value function f , we can plug in x = 1 and t = 0 to get
a formula for (9):

f(1, 0) = E
[
V (XT ) 1τ≥T (X[0,T ])

]
.

We compute the entire value function (10) for the purpose of getting the single
number (9).

The value function defined in (10) may seem more complicated than neces-
sary. A function that is simpler to write down is

g(x, t) = Ex,t
[
V (XT ) 1τ≥T (X[0,T ])

]
. (11)

The difference between these is that g counts paths that have touched zero at
some time s < t. The definition (10) excludes such paths. More precisely, it
conditions on not having them. The two definitions are related by Bayes’ rule.
In the the case here, the integrand is zero if τ < T , so

f(x, t) =
g(x, t)

Px,t(τ ≥ T )
.
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The definition of g is suitable for expressing as a conditional expectation, con-
ditional on Ft:

g(Xt, t) = E
[
V (XT ) 1τ≥T (X[0,T ]) | Ft

]
The denominator has a similar expression. In fact

P(τ ≥ t) = E
[
1τ≥t(X[0,T ])

]
,

so

f(Xt, t) =
E
[
V (XT ) 1τ≥T (X[0,T ]) | Ft

]
E
[
1τ≥t(X[0,T ]) | Ft

] .

This definition might be very hard to work with for the following reason. The
denominator E

[
1τ≥t(X[0,T ]) | Ft

]
is not really an expectation because the ran-

dom variable 1τ≥t(X[0,T ]) is known at time t. Therefore

E
[
1τ≥t(X[0,T ]) | Ft

]
= 1τ≥t(X[0,T ]) .

But the formula

f(Xt, t) =
E
[
V (XT ) 1τ≥T (X[0,T ]) | Ft

]
1τ≥t(X[0,T ])

looks bad, because the denominator is not a function of Xt and t alone. It
depends on the path before t. Somehow, when you did the division, this de-
pendence cancels out. The bottom line, for me, is that the more complicated
definition (10) will be easier to work with.

The value function is found by solving a PDE problem. A PDE problem con-
sists of a PDE and other conditions as appropriate – initial conditions, boundary
conditions, final conditions, etc. The PDE in this case is the backward equation

∂tf = Lf =
1
2
µ(x, t)∂2

xf(x, t) + a(x, t)∂xf(x, t) . (12)

This PDE is satisfied in the region x > 0. The value function may not be
defined for x < 0. If it is defined, the most natural definition would be f = 0.
Either way, the PDE (12) is used only in the continuation region x > 0. The
final condition is clear from the definition of f . If t = T , and x ≥ 0, then
f(x, T ) = V (x). There is an extra boundary condition at x = 0, which is
the boundary of the continuation region in this example. We can guess this
boundary condition by continuity. If x is actually on the boundary of the
continuation region, which is to say x = 0, then the definition (10) gives the
value zero. If f(x, t) is a continuous function of x, then 0 is the limiting value
of f as x→ 0. This suggests that the boundary condition should be

f(0, t) = 0 . (13)

Here is one of the few examples where f may be calculated explicitly. Let
the process Xt be Brownian motion starting at x0 = 1 but having var(Xt) = t.
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This makes σ2 = µ 1, and a = 0. Take V (x) = 1, so f is just the conditional
probability of not touching the boundary before time T . The PDE problem is:
Find f(x, t), defined for x ≥ 0 and t ≤ T that satisfies the PDE

∂tf +
1
2
∂2
xf = 0

where it is defined. In addition, f should satisfy the final condition f(x, T ) = 1
for x ≥ 0, and the boundary condition f(0, t) = 0 for t ≤ T .

This problem may be solved using something like the method of images. We
extend the definition of f so that f is defined for all x with the anti-symmetry
condition f(−x, t) = −f(x, t). If f is continuous, this implies that f(0, t) = 0.
In order to achieve the skew-symmetry condition, we take the final condition to
be skew symmetric. We do this without changing the already known values of
f(x, T ) for x > 0. Clearly, the extended final condition should be f(x, T ) = 1
for x > 0 and f(x, t) = −1 for x < 0. The value of f when x = 0 is irrelevant.
There is no boundary. We are talking about the simple heat equation (OK,
with the direction of time reversed). The solution may be given as a Green’s
function integral using the known final values:

f(x, t) =
∫ ∞
−∞

G(x− y, T − t)f(y, T ) dy

=
∫ ∞

0

G(x− y, T − t) dy −
∫ 0

−∞
G(x− y, T − t) dy

=
∫ ∞

0

1√
2π(T − t)

e−(x−y)2/2(T−t) dy

−
∫ 0

−∞

1√
2π(T − t)

e−(x−y)2/2(T−t) dy .

The two Gaussian integrals on the last line represent probabilities. We can
express them in terms of the cumulative normal distribution function N(z) =
P(Z ≤ z), where Z ∼ N (0, 1). The second integral on the last line is the
probability that the random variable Y ∼ N (x, T − t) has Y < 0. In general, if
Y ∼ N (µ, σ2), then Y ∼ µ+σZ, where Z ∼ N (0, 1). The expression Y ∼ µ+σZ
means that Y and µ+ σZ have the same distribution. This implies that

P(Y < 0) = P(µ+ σZ < 0) = P
(
Z <

−µ
σ

)
= N

(
−µ
σ

)
.

In this example, µ = x and σ =
√
T − t, so

P(Y < 0) = N

(
−x√
T − t

)
.

There are two properties of Gaussians, each of which would give a way to
write the first integral in terms of N . The first is P(Z > a) = P(−Z < −a) =
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P(Z < a), the last is because −Z ∼ Z – the Gaussian distribution is symmetric.
This gives P(Z > a) = N(−a). In the present example, the first integral is

P(Y > 0) = P(µ+ σZ > 0) = P
(
Z >

−µ
σ

)
= N

(µ
σ

)
= N

(
x√
T − t

)
.

The resulting formula for the survival probability is

f(x, t) = Px,t(τ > T ) = N

(
x√
T − t

)
−N

(
−x√
T − t

)
. (14)

Here is a quick check that this function satisfies all the conditions we set for it.
It satisfies the PDE (a calculation using N ′(z) = 1√

2π
e−z

2/2). It satisfies the
boundary condition. If you put x = 0, the two terms on the right cancel exactly.
It satisfies the final condition. If x > 0 and you send t to T , then N

(
x√
T−t

)
→ 1

and N
(
−x√
T−t

)
→ 0. That is because x√

T−t → ∞ and −x√
T−t → −∞ (this is

where you use x > 0).
The other fact about N is P(Z > a) = 1−P(Z < a) = 1−N(a). Therefore,

P
(
Z >

−µ
σ

)
= 1− P

(
Z <

−µ
σ

)
= 1−N

(
−x√
T − t

)
This gives a formula equivalent to (14), which is

f(x, t) = Px,t(τ > T ) = 1− 2N
(
−x√
T − t

)
. (15)

This formula is what you would get from the Kolmogorov reflection principle:

Px,t(Xs < 0 for some s ∈ [t, T ]) = 2 Px,t(XT < 0) ,

so

Px,t(Xs > 0 for all s ∈ [t, T ]) = 1− Px,t(Xs < 0 for some s ∈ [t, T ])
= 1− 2 Px,t(XT < 0)

= 1− 2N
(
−x√
T − t

)
.

The formula (15) satisfies the PDE for the same reason as (14). It satisfies the
final condition because P(XT < 0 | XT = x > 0) = 0. It satisfies the boundary
condition because N(0) = 1

2 .
We can use (14) or (15) to estimate the survival probability starting from

a fixed x at time t = 0 as T → ∞. This is the probability of not hitting
the boundary for a long time. The argument to N goes to zero as T → ∞.
Therefore, we use N(ε) ≈ N(0) + N ′(0)ε. We already saw that N(0) = 1

2 and
N ′(0) = 1√

2π
. Therefore, for large T ,

Px,0(τ > T ) ≈ x√
2πT

. (16)
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We see that this goes to zero as T → ∞. Therefore, we know that from any
starting point, Brownian motion hits x = 0 at some positive time almost surely.
This is true also in two dimensions – a two dimensional Brownian motion will
touch the origin almost surely. In three or more dimensions it is not true. In
fact, if |X0| > 1, there is a positive probability that |Xt| > 1 for all t > 0.
Brownian motion in one or two dimensions is recurrent, while it is transient in
dimensions 3 or more.

While we are talking about these solutions to the backward equation, let us
notice some other properties. One is the smoothing property. The formula (14)
defines a function that is discontinuous when t = T . Nevertheless, f(x, t) is a
smooth function of x for t < T . This is a general property of PDE’s of diffusion
type.

Some other properties are illustrated by a different solution of the backward
equation

h(x, t) = N

(
x+ 1√
T − t

)
−N

(
x− 1√
T − t

)
.

This function has final values h(x, T ) = 1 if −1 < x < 1 and h(x, T ) = 0
otherwise. That makes h(x, T ) = 1|x|<1, which is a step function that is different
from zero when x is not too far from zero. Whenever t < T , h(x, t) > 0 for any
x. This means that the fact that h > 0 “propagates” infinitely fast through the
whole domain where h is defined. This is also a property of general diffusion
PDE’s. However, the solution is not large for x > 1 and t close to T . In fact,
it is exponentially small. The influence is very small in short times and large
distances.

Finally, look at h(x, t) for x near −1 and t close to T . The second term is
exponentially small, as we just said. But the first term looks like the solution
with final data that have a jump at x = −1. The behavior near −1 and T is
almost completely determined by the final condition there. This is approximate
locality.
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