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1 Introduction to the material for the week

The material this week is all about the expression

dXt = atdt+ btdWt . (1)

There are two distinct ways to interpret this, which we will call strong and weak.
The strong interpretation is more literally true, that X is a function of W , that
X, a and b are adapted, and (1) is true in the sense of the Ito calculus. For
example, we saw that if Xt = eσWt , then

dXt = σeσWtdWt +
1
2
σ2eσWtdt

=
1
2
σ2Xtdt+ σXtdWt .

In this case, (1) is satisfied with at = 1
2σ

2Xt and btσXt. Roughly speaking, this
is the sense we usually assume when doing analysis.

The weak interpretation is not literal. It does not require that we have a
Brownian motion path W in mind. In the weak sense, (1) means that at time
t you know Xt, at and bt, and

E[ dXt | Ft] = atdt , (2)

and
E
[

(dXt)
2 | Ft

]
= b2tdt . (3)

In this view, (1) just says that for dt > 0, the corresponding dX is the sum
of a deterministic and a random piece, atdt and btdWt. “Deterministic” means
“known at time t”. The example with at = 1

2σ
2X2

t shows that at need not be
known at times earlier than t. The random piece models the part of dXt that
cannot be predicted at time t. We assume that this noise component has mean
zero, because if the mean were not zero, we would put the mean into at instead.
The modeling assumption is that the noise innovation, dWt, not only has mean
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zero, but is independent of anything known in Ft. The strength of the noise at
time t is bt. This is assumed known at time t. An unknown part bt would be
part of Wt instead.

The point of all this philosophy is that we can create models of stochastic
processes by writing expressions for at and bt in (1). If we think we know the
(conditional at time t) mean and variance, we use (1) to create a model process
Xt. The Black and Scholes model of the evolution of a stock price is a great
example of this kind of reasoning. Suppose St is the price of a stock at time
t. Then dSt should be proportional to St so that dS is measured as percentage
of St (OK, a little tautology there). If St were replaced by, say, 2St, then dSt
would be replaced by 2dSt. If there were a “doublestock” that consisted of two
shares of stock, the price change of a doubleshare would be twice the change of
a single share. Therefore, we think both the deterministic and random parts of
dSt should be proportional to St. The constants are traditionally called µ and
σ, the expected rate of return and the volatility respectively:

dSt = µStdt+ σStdWt . (4)

An equation of the form

dXt = a(Xt, t)dt+ b(Xt, t)dWt (5)

is a stochastic differential equation, or SDE. The difference between an SDE and
a general process that satisfies (1) is that here at and bt are required to be known
deterministic functions. For example, the function a(x, t) is a function of two
variables that is completely known at time 0. For this reason, solution to an SDE
is a Markov process. The probability distribution of the path starting at time
t, which is X[t,T ], is completely determined by Xt. If a and b are independent
of t, then the SDE (5) and the corresponding Markov process are homogeneous.
Otherwise they are heterogeneous. If b is independent of X we have additive
noise. Otherwise, the noise is multiplicative. There are many problems with
additive noise. These are simpler from both theoretical and practical points of
view.

Most SDE’s do not have closed form solutions. But solutions may be com-
puted numerically. The Euler method, also called EulerMaruyama, is a way to
create approximate sample paths. It is possible to get information about solu-
tions by solving the forward or backward Kolmogorov equation. These, also,
would generally be solved numerically. But that is impractical for SDE systems
with more than a few components.

2 Geometric Brownian motion

Solutions to the SDE (4) are called geometric Brownian motion, or GBM. There
are several ways to find the solution. One is to try an ansatz of the form
St = Ate

σWt . Here, At is a deterministic function of t. We do an Ito calculation
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with f(w, t) = Ate
σw, so that ∂tf = Ȧeσw, ∂wf = σf , and ∂2

wf = σ2f . The
result is

d
(
Ate

σWt
)

= Ȧte
σWtdt+ σAte

σWtdWt +
1
2
σ2Ate

σWtdt

=

(
Ȧt
At

+
1
2
σ2

)
Stdt+ σStdWt .

This satisfies (4) if
Ȧt
At

+
1
2
σ2 = µ .

That implies that

Ȧt =
(
µ− 1

2
σ2

)
At .

The solution is a simple exponential:

At = A0e
(µ− 1

2σ
2)t .

If we set t = 0 and use a standard Brownian motion with W0 = 0, we find
A0 = s0. The full solution is

St = s0e
σWt+(µ− 1

2σ
2)t . (6)

Here is a related way to find the solution formula (6). Define

Xt = log(St) , St = eXt . (7)

We use Ito’s lemma for the process St. If f(s) = log(s), then ∂sf = 1
s and

∂2
sf = ∂s

1
s = − 1

s2 . Then

dXt = df(St)

= ∂sf(St)dSt +
1
2
∂2
sf(St) (dSt)

2

=
1
St
dSt −

1
2

1
S2
t

(dSt)
2

=
1
St

(µStdt+ σStdWt)−
1
2

1
S2
t

σ2S2
t dt

dXt =
(
µ− 1

2
σ2

)
dt+ σdWt .

The solution of this is ordinary arithmetic Brownian motion (there are geometric
series and arithmetic series).

Xt = x0 +
(
µ− 1

2
σ2

)
t+ σWt .

3



An arithmetic Brownian motion has constant drift and Brownian motion parts.
This one has drift µ− 1

2σ
2 and noise coefficient σ. A standard Brownian motion

has zero drift and unit noise coefficient. The solution from this is

St = eXt = ex0e(µ−
1
2σ

2)t+σWt .

This is the same as before, with s0 = ex0 .
There is another way to arrive at the log variable transformation. Suppose

V (ST ) is a payout and we consider the value function

f(s, t) = Es,t[V (St)] .

This satisfies the backward equation

∂tf +
σ2s2

2
∂2
sf + µs∂sf = 0 . (8)

This is because a(s, t) = µs, and b(s, t) = σs. The Black Scholes PDE is similar
to this. This PDE has coefficients σ2s2

2 and µs, which are functions of the
independent variable s. It is a linear PDE with variable coefficients. We can
simplify the PDE by a change of variable to make it into a constant coefficient
PDE. This change of variable is

x = log(s) , s = ex .

There is an obvious sense in which this is the same as (7). But there is a sense
in which it is different. Here, the substitution is about simple variables s and
x, not stochastic processes St and Xt.

We rewrite (8) in the x variable. The chain rule from calculus gives

∂sf =
∂f

∂s
=
∂f

∂x

∂x

∂s
=

1
s
∂xf .

The next derivative is

∂2
sf = ∂s (∂sf)

= ∂s

(
1
s
∂xf

)
=
(
∂s

1
s

)
∂xf +

1
s
∂s (∂xf)

= − 1
s2
∂xf +

1
s2
∂2
xf

These derivatives go back into (8) to give

∂tf +
σ2

2
∂2
xf +

(
µ− σ2

2

)
∂xf = 0 . (9)
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This PDE is the backward equation for the SDE dXt =
(
µ− σ2

2

)
dt + σdWt.

We can transform (9) into the standard heat equation with some simple nor-
malizations. The first is to get rid of the drift term, the term involving ∂xf ,
using a coordinate that moves with the drift:

x = y +
(
µ− σ2

2

)
t , y = x−

(
µ− σ2

2

)
t .

It can be tricky to calculate what happens to the equation (9) in the new
coordinates. Since ∂yx = ∂xy = 1, calculating space derivatives (x or y) does
not change the equation. The change has to do with the time derivative, which
may not seem to have changed. One way to do it is to recall the definition of
partial derivative. If the variables are x and t, the partial derivative of f with
respect to t with x fixed is

∂tf
∣∣∣
x

= lim
∆t→0

f(t+ ∆t)− f(t)
∆t

∣∣∣∣∣
x

This is the rate of change of the quantity f when t is changed and x is held
fixed. The definition of ∂t changes if we use the y variable in place of x. It
becomes the rate of change of f when t changes and y is held fixed. Suppose
we have changes ∆t, ∆x and ∆y. We fix ∆t and calculate ∆y:

∆y = ∆x−
(
µ− σ2

2

)
∆t .

If ∆y = 0, then ∆x =
(
µ− σ2

2

)
∆t. Therefore

∂tf
∣∣∣
y

= lim
∆t→0

f(x+ ∆x, t+ ∆t)− f(x, t)
∆t

∣∣∣∣∣
y

= lim
∆t→0

1
∆t

[(
∂xf

∣∣∣
t

)
∆x+

(
∂tf
∣∣∣
x

)
∆t+O

(
∆x2

)
+O

(
∆t2

)]
= lim

∆t→0

1
∆t

[(
∂xf

∣∣∣
t

)(
µ− σ2

2

)
+
(
∂tf
∣∣∣
x

)]
∆t

∆t

=
(
µ− σ2

2

)(
∂xf

∣∣∣
t

)
+
(
∂tf
∣∣∣
x

)
.

We express the backward equation (9) in the y and t variables as

∂tf +
σ2

2
∂2
yf = 0 .

The difference is that ∂t refers to the derivative with y fixed rather than with
x fixed as in (9). One more step will transform this to the standard heat
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equation. We rescale the space variable to get rid of the coefficient σ2. The
change of variables that does that is

σ

y
=

1
z

, z =
y

σ
, y = σz .

In these variables,

∂tf +
1
2
∂2
zf = 0 .

The payoff for these manipulations is that we know a lot about solutions of
the heat equation. We know the Green’s function and the Fourier transform.
All of these tools now apply to the equation (8) too.

3 Simulating an SDE

There are three primary ways to get information about the solution of an SDE.
The first is to solve it exactly in closed form. That option is limited to very few
SDE’s. The second is to solve the backward equation numerically. We discuss
in a future class how to do that. For now it suffices to say that this approach
is impractical for SDE systems with more than a few components. The third is
direct numerical simulation of the SDE. We discuss that option here.

Consider an SDE (5). We want to approximate the path X[0,T ]. Choose
a small ∆t, define tn = n∆t, and define the approximate sample path to be
X

(∆t)
n ≈ Xtn . There are two forms of the approximation algorithm. One is

X
(∆t)
n+1 = X(∆t)

n + a(X(∆t)
n , tn)∆t+ b(X(∆t)

n , tn)∆Wn . (10)

Here Wt is a Brownian motion path, and ∆Wn = Wtn+1−Wtn , is the increment
for time ∆t. In practice, we have to generate the Brownian motion increments
using a random number generator. The properties of ∆Wn are that they are
independent, and that they are Gaussian with mean zero and variance ∆t. In
case it is a multi-variate Brownian motion, the covariance is ∆I. We gener-
ate such random variables starting with independent standard normals Zn and
multiplying by ∆t1/2:

∆Wn = ∆t1/2Zn , Zn ∼ N (0, I) . (11)

This algorithm is motivated by the strong form of the SDE. When we integrate
(5) over the time increment [tn, tn + ∆t], we find

Xtn+1 = Xtn +
∫ tn+t

tn

a(Xt, t)dt+
∫ tn+t

tn

b(Xt, t)dWt . (12)

If ∆t is small, then Xt ≈ Xtn for t ∈ [tn, tn+1]. If we replace Xt by the
approximate value Xtn in (12), the integrals simplify to∫ tn+t

tn

a(Xt, t)dt ≈ a(Xtn , tn)∆t ,
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and ∫ tn+t

tn

b(Xt, t)dWt ≈ b(Xtn , tn)
∫ tn+t

tn

dWt = b(Xtn , tn)∆Wn .

This gives the approximate formula

Xtn+1 ≈ Xtn + a(Xtn , tn)∆t+ b(Xtn , tn)∆Wn .

The approximate formula for the exact path motivates the exact formula (10)
for the approximate path.

The other form of the approximation algorithm just looks for approximate
sample paths that have the right mean and variance over a step of size ∆t. For
that purpose, let Zn be a family of independent random variables with mean
zero and variance 1, or covariance I. You want

E
[
X

(∆t)
n+1 | Fn

]
= X(∆t)

n + a(X(∆t)
n , tn)∆t ,

and
var
(
X

(∆t)
n+1 | Fn

)
= b2(X(∆t)

n , tn)∆t .

These formulas are not exact for SDE paths, but they will hold exactly for
approximate sample paths X(∆t). The formula

X
(∆t)
n+1 = X(∆t)

n + a(X(∆t)
n , tn)∆t+ b(X(∆t)

n , tn)∆t1/2Zn (13)

makes these true. The actual algorithms (10) and (13) are identical, if we use a
Gaussian Zn in (13). The difference is only in interpretation. In the strong form
(10) we are generating an approximate path that is a function of the driving
Brownian motion. In the weak form (13), we are just making a path with
approximately the right statistics. In either case, generating an approximate
sample path might be called simulating the SDE.

We are usually interested in more than simulations. Instead we want to know
expected values of functions of the path. These could be expected payouts or
hitting probabilities or something more complicated. A single path or a small
number of paths may not represent the entire “population” of paths. The only
way to learn about population properties is to do a large number of simulations.
The main way to digest a large collection of sample paths is to compute statistics
of them. Most such statistics correspond the expected value of some function
of a path.

This brings up an important distinction, between simulation and Monte
Carlo. Simulation is described above. Monte Carlo1 it the process of using
random numbers to compute something that itself is not random. A hitting
probability is not a random number, for example, though it is defined in terms
of a random process. The distinction is important because it suggests that there
may be more than one way to estimate the same number. We will discuss this
a little later when we talk about applications of Girsanov’s theorem.

1This thoughtful definition may be found in the book Monte Carlo Methods by Malvin
Kalos and Paula Whitlock.
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For now, let V (x[0,T ]) be some function of a path on the interval [0, T ]. Let
its expected value for the SDE be

A = E
[
V (X[0,T ])

]
.

For example, to estimate a hitting probability you might take V = 1τ≤T . To
estimate A, we generate a large number of independent approximate sample
paths X(∆t)

[0,T ],k, k = 1, . . . , L. Here L is the sample size, which is the number of
paths. The estimate of A is

Â =
1
L

L∑
k=1

V
(
X

(∆t)
[0,T ],k

)
. (14)

The error is Â−A. This error is composed of bias and statistical error. Bias
comes from the fact that sample paths are not exact. You reduce bias by letting
∆t→ 0.

bias = E
[
Â
]
−A = E

[
V
(
X

(∆t)
[0,T ],k

)]
− E

[
V (X[0,T ])

]
.

In statistics, we say a statistic is unbiased if the expected value of the statistic is
the true parameter value. There are unbiased statistics, but it is very rare than
the estimate of a quantity like A is unbiased. Statistical error comes from the
fact that we use a finite number of sample paths. You reduce statistical error
by taking L→∞. The definition is

statistical error = Â− E
[
Â
]
.

Neither the bias nor the statistical error goes to zero very fast as ∆t→ 0 or
L → ∞. The bias typically is proportional to ∆t or ∆t1/2, depending on the
problem. The statistical error typically is proportional to L−1/2, which comes
from the central limit theorem. For this reason Monte Carlo estimation either
is very expensive, or not very accurate, or both.

You could ask about the scientific justification for using SDE models if all
we do with them is discretize and simulate. Couldn’t we just have simulated the
original process? There are several justifications for the SDE approach. One
has to do with time scales. We saw on an old assignment that the diffusion
process may be an approximation to another process that operates on a very
fast time scale, Tm. It is possible that the time step ∆t needed to simulate the
SDE is much larger than Tm (the “microscopic” time scale). The SDE model
also can be simpler than the microscopic model it approximates. For example,
the Ornstein-Uhlenbeck/Einstein model of Brownian motion replaces a process
in (X,V ) space with a simpler process in X space alone.

4 Existence of solutions

The first question asked in a graduate course on differential equations is: Do
differential equations have solutions? You can ask the same question about
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stochastic differential equations, and the answer is similar. If the coefficients
a(x, t) and b(x, t) are Lipschitz continuous, then a simple iteration argument
shows that solutions exist. If the coefficients are not Lipschitz continuous, all
questions get harder and more problem specific.

A function f(x) is Lipschitz continuous with Lipschitz constant C if

|f(x)− f(y)| ≤ C |x− y| . (15)

For example, f(x) = sin(2x) is Lipschitz with Lipschitz constant C = 2. The
functions f(x) = ex, f(x) = x2, and f(x) = sin(x2) are not Lipschitz continuous.
If f is differentiable and |f ′(x)| ≤ C for all x, then f is Lipschitz continuous
with constant C. We say that f is locally Lipschitz near the point x0 if there
is an R so that (15) holds whenever |x− x0| ≤ R and |y − x0| ≤ R. Any
differentiable function is locally Lipschitz. The examples show that many nice
seeming functions are not globally Lipschitz.

In the easy part of the existence theory for differential equations, locally
Lipshitz equations have local solutions (solutions defined for a finite but possibly
not infinite range of t). Globally Lipschitz equations have solutions defined
globally in time, which is to say, for all t ∈ [0,∞). In particular, if a and b are
(globally) Lipschitz then the SDE (5) has a solution defined globally in time.
More precisely, there is a function W[0,t] → Xt so that the process Xt satisfies
(5). This function may be constructed as a limit of the Picard iteration process.
This defines a sequence of approximate solutions Xt,k and recovers the exact
solution in the limit k →∞. The iteration is

dXt,k+1 = a(Xt,k, t)dt+ b(Xt,k, t)dWk .

In integral form, this is

Xt,k+1 = x0 +
∫ t

0

a(Xs,k, s)ds+
∫ t

0

b(Xs,k, s)dWs .

We must prove that these approximations converge to something.
Here is a quick version of the argument for the simpler case a = 0. We

subtract the k and k − 1 equations to get

Xt,k+1 −Xt,k =
∫ t

0

(b(Xs,k, s)− b(Xs,k−1, s)) dWs .

The object is to prove that Xt,k+1−Xt,k is smaller than Xt,k−Xt,k−1 eventually
as k →∞. You can use the Ito isometry formula to get

E
[

(Xt,k+1 −Xt,k)2
]

=
∫ t

0

E
[

(b(Xs,k, s)− b(Xs,k−1, s))
2
]
ds .

Since b is Lipschitz continuous,

(b(Xs,k, s)− b(Xs,k−1, s))
2 ≤ C2 (Xs,k −Xs,k−1)2

.
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Therefore,

E
[

(Xt,k+1 −Xt,k)2
]
≤ C2

∫ t

0

E
[

(Xs,k −Xs,k−1)2
]
ds

Now define
Mt,k = E

[
(Xt,k+1 −Xt,k)2

]
.

Our integral inequality is

Mt,k ≤ C2

∫ t

0

Ms,k−1ds .

It is easy to derive from this

Mt,k ≤M0,t
eC

tt

k!
.

For any fixed t, this implies that the Xk,t are a Cauchy sequence almost surely
(our Borel Cantelli lemma again).
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