Stochastic Calculus Assignment 1

Chen-Hung Wu

December 10, 2012

1. (a) If $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then

$$
\begin{aligned}
E\left[X^{4}\right] & =\int_{\mathbb{R}} x^{4} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x \\
& =\int_{\mathbb{R}} x^{3}\left(-\sigma^{2}\right) \partial_{x} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x \\
& =\left.\left(-\sigma^{2}\right) x^{3} e^{-\frac{x^{2}}{2 \sigma^{2}}}\right|_{-\infty} ^{\infty}+3 \sigma^{2} \int_{\mathbb{R}} x^{2} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x \\
& =0+3 \sigma^{4}=3 \sigma^{4} .
\end{aligned}
$$

(b) Following from $\mathbf{1}(\mathrm{a})$, the variance of X^{2} is

$$
\begin{aligned}
\operatorname{var}\left(X^{2}\right) & =E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2} \\
& =3 \sigma^{4}-\sigma^{4} \\
& =2 \sigma^{4} .
\end{aligned}
$$

(c) Notice that $E\left[Y_{i} Y_{j} Y_{k} Y_{l}\right]=0$ for pairwise distinct i, j, k, and l by independence. Also $E\left[Y_{i} Y_{j}^{2} Y_{l}\right]=0$ for $i \neq j \neq l$, and $E\left[Y_{i}^{3} Y_{j}\right]=0$ for $i \neq j$. Therefore,

$$
\begin{align*}
E\left[X_{n}^{4}\right] & =\frac{1}{n^{2}} E\left[\left(\sum_{i=1}^{n} Y_{i}\right)\left(\sum_{j=1}^{n} Y_{j}\right)\left(\sum_{k=1}^{n} Y_{k}\right)\left(\sum_{l=1}^{n} Y_{l}\right)\right] \\
& =\frac{3}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[Y_{i}^{2} Y_{j}^{2}\right]+\frac{1}{n^{2}} \sum_{i=1}^{n} E\left[Y_{i}^{4}\right] \\
& =3 n(n-1) \sigma^{4}+\frac{\mu_{4}}{n} . \tag{1}
\end{align*}
$$

(d) As $n \rightarrow \infty$, Eq (1) gives that $E\left[X_{n}^{4}\right] \rightarrow 3 \sigma^{4}$. Thus the central limit theorem says that the influence of μ_{4} should disappear in the limit as $n \rightarrow \infty$.
2. (a) If X_{i} is replaced by $X_{i}-\mu$, then

$$
\begin{aligned}
\hat{\mu}_{\text {new }} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \\
& =\hat{\mu}_{\text {old }}-\mu .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\widehat{\sigma^{2}} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{\text {new }}\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\mu-\bar{X}_{\text {old }}+\mu\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{\text {old }}\right)^{2} .
\end{aligned}
$$

(b) If X_{i} is replaced by $\frac{1}{\sigma} X_{i}$, then

$$
\begin{aligned}
\hat{\mu}_{\text {new }} & =\frac{1}{n \sigma} \sum_{i=1}^{n} X_{i} \\
& =\frac{1}{\sigma} \hat{\mu}_{\text {old }}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \widehat{\sigma^{2}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{1}{\sigma} X_{i}-\bar{X}_{\text {new }}\right)^{2} \\
&=\frac{1}{n-1} \frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}_{\text {old }}\right)^{2} \\
&=\frac{1}{n-1} \widehat{\sigma^{2}} \\
& \sigma^{2}
\end{aligned}
$$

(c)

$$
\left\|v_{1}\right\|_{l^{2}}=\left(\sum_{i=1}^{n} \frac{1}{n}\right)^{\frac{1}{2}}=1
$$

Every finite-dimensional inner product space has an orthonormal basis, which may be obtained from an arbitrary basis using the Gram-Schmidt process.
(d) Given $v \in \mathbb{R}^{n}$ and $\mathcal{S} \in \mathbb{R}^{n}$ is be the plane of vectors perpendicular to v. Let $x \in \mathbb{R}^{n}$ such that $y \in \mathcal{S}$ is the orthogonal projection of x onto \mathcal{S}, then we must have the minimum

$$
\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2 x^{t} y
$$

which means $x^{t} y=\|y\|^{2}$. Therefore, since v is perpendicular to y, we can decompose x as

$$
\begin{align*}
x & =\left(x^{t} v\right) \frac{v}{\|v\|^{2}}+\left(x^{t} y\right) \frac{y}{\|y\|^{2}} \\
& =\left(x^{t} v\right) v+y, \tag{2}
\end{align*}
$$

which asserts i..
From Eq. (2), $x-y=\left(x^{t} v\right) v$ is perpendicular to $x-y$. So ii. is true. To verify iii, we square Eq. (2),

$$
\begin{aligned}
\|x\|^{2} & =\left(x^{t} v\right)^{2}+\|y\|^{2}+2\left(x^{t} v\right) v^{t} y \\
& =\left(x^{t} v\right)^{2}+\|y\|^{2}
\end{aligned}
$$

from ii..
(e) Trivial computation,

$$
\bar{X}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}=\frac{1}{\sqrt{n}} X^{t} v_{1} .
$$

(f) Note that

$$
\begin{aligned}
E\left[Y_{i} \bar{X}\right] & =\frac{1}{\sqrt{n}} E\left[\sum_{j=1}^{n} v_{i, j} X_{j} \sum_{k=1}^{n} X_{k}\right] \\
& =E\left[Y_{i}\right] E[\bar{X}]
\end{aligned}
$$

by the independence of X. The same reason we prove that the independence of Y_{i}. Also the orthogonality gives the fact $Y_{i} \sim \mathcal{N}(0,1)$.
(g) Let Y be the orthogonal projection of X onto S. Then

$$
\begin{aligned}
\|Y\|^{2} & =\sum_{i=2}^{n} Y_{i}^{2} \\
(\text { by } 2(\mathrm{~d}) \mathrm{i}) & =\sum_{i=1}^{n}\left(X_{i}-\left[X^{t} v_{1}\right] v_{1, i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(X_{i}-\sqrt{n} \bar{X} \frac{1}{\sqrt{n}}\right)^{2} \\
& =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
\end{aligned}
$$

(h) Notice from (g), since

$$
\widehat{\sigma^{2}}=\frac{1}{n-1} \sum_{i=2}^{n} Y_{i}^{2}
$$

a function of $Y_{2}, Y_{3}, \cdots, Y_{n}$, and $\hat{\mu}$ is a function of Y_{1} only. They must be independent to each other.
(i) From part (f) we have $Y_{i} \sim \mathcal{N}(0,1)$, therefore

$$
\begin{aligned}
\widehat{\sigma^{2}} & =\frac{1}{n-1} \sum_{i=2}^{n} Y_{i}^{2} \\
& \sim \frac{1}{n-1} \chi_{n-1}^{2} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
E\left[\widehat{\sigma^{2}}\right] & =\frac{1}{n-1} \sum_{i=2}^{n} E\left[Y_{i}^{2}\right] \\
& =\frac{n-1}{n-1}=1
\end{aligned}
$$

(j)
3. (a) Consider the $n-1$ samples x_{i} to represent a single point in a $(n-1)$-dimensional space. The chi squared distribution for $n-1$ degrees of freedom will then be given by the prodoct of Gaussian $\mathcal{N}(0,1)$,

$$
\begin{aligned}
F(q) & =\operatorname{Pr}(Q \leq q) \\
& =\frac{1}{(2 \pi)^{(n-1) / 2}} \int_{\|\mathbf{x}\|^{2} \leq q} e^{-\|\mathbf{x}\|^{2} / 2} d x_{1} d x_{2} \ldots d x_{n-1} .
\end{aligned}
$$

Let $r=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-1}^{2}}$, since it is a constant, it may be removed from inside the integral first

$$
\begin{equation*}
F(q)=\frac{e^{-r^{2} / 2}}{(2 \pi)^{(n-1) / 2}} \int_{\mathcal{S}} d x_{1} d x_{2} \ldots d x_{n-1} \tag{3}
\end{equation*}
$$

The integral in (3) is now simply the surface area A of the $n-2$ sphere times the infinitesimal thickness of the sphere which is $d r=\frac{d q}{2 r}$. The area of a $n-2$ sphere is

$$
A=\frac{(n-1) r^{n-2} \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}+1\right)}
$$

Substituting and cancelling terms yields,

$$
\begin{aligned}
F(q) & =\frac{e^{-r^{2} / 2}}{(2 \pi)^{(n-1) / 2}} \int_{r=0}^{\sqrt{q}} \frac{(n-1) r^{n-2} \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}+1\right)} 2 r d r \\
& =\underbrace{\frac{2 \pi^{\frac{n-1}{2}}(n-1)}{\Gamma\left(\frac{n-1}{2}+1\right)(2 \pi)^{(n-1) / 2}}}_{\text {constant }} \int_{r=0}^{\sqrt{q}} e^{-r^{2} / 2} r^{n-2} r d r \\
& =C \int_{r=0}^{\sqrt{q}} r^{n-2} e^{-r^{2} / 2} d r .
\end{aligned}
$$

The second part is nothing but differentiating $F(q)$ with respect to q

$$
\begin{aligned}
f(q) & =F^{\prime}(q) \\
& =C q^{-\frac{1}{2}} q^{\frac{n-1}{2}} e^{-\frac{q}{2}} \\
& =C q^{\frac{n-2}{2}} e^{-\frac{q}{2}} .
\end{aligned}
$$

(b) $|t| \leq x$ implies

$$
\begin{aligned}
\left|\frac{\sqrt{n-1} Z}{\sqrt{Q}}\right| & \leq x \\
|Z| & \leq \frac{x \sqrt{Q}}{\sqrt{n-1}}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\operatorname{Pr}(|t|<x) & =\operatorname{Pr}\left(|Z| \leq \frac{x \sqrt{Q}}{\sqrt{n-1}}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\frac{x \sqrt{Q}}{\sqrt{n-1}}}^{\frac{x \sqrt{Q}}{\sqrt{n-1}}} e^{-\frac{z^{2}}{2}} d z \\
& =\frac{C}{\sqrt{2 \pi}} \int_{0}^{\infty} q^{\frac{n-2}{2}} e^{-\frac{q}{2}} \int_{-\frac{x \sqrt{q}}{\sqrt{n-1}}}^{\frac{x \sqrt{q}}{\sqrt{n-1}}} e^{-\frac{z^{2}}{2}} d z d q . \tag{4}
\end{align*}
$$

(c) Differentiate Eq.(4) with respect to x,

$$
f(x)=\frac{C}{\sqrt{\frac{1}{2}(n-1) \pi}} \int_{0}^{\infty} q^{\frac{n-1}{2}} e^{-\frac{q}{2}} e^{-\frac{x^{2} q}{2(n-1)}} d q
$$

(d) Let $a(x) q=\frac{1}{2}\left(1+\frac{1}{n-1} x^{2}\right) q=r$, then

$$
\begin{aligned}
f(x) & =C \int_{0}^{\infty} q^{\frac{n-1}{2}} e^{-a(x) q} d q \\
& =2 C \int_{0}^{\infty}\left(1+\frac{1}{n-1} x^{2}\right)^{-\frac{n-1}{2}} \frac{1}{2}\left(1+\frac{1}{n-1} x^{2}\right) r^{\frac{n-1}{2}} e^{-r} d r \\
& =\frac{C}{\left(1+\frac{1}{n-1} x^{2}\right)^{\frac{n}{2}}} \int_{0}^{\infty} r^{\frac{n-1}{2}} e^{-r} d r \\
& =\frac{C}{\left(1+\frac{1}{n-1} x^{2}\right)^{\frac{n}{2}}} \Gamma\left(\frac{n+1}{2}\right) \\
& =\frac{C}{\left(1+\frac{1}{n-1} x^{2}\right)^{\frac{n}{2}}} .
\end{aligned}
$$

(e) Consider the simplest case $\mu=0, \sigma=1$,

$$
\begin{aligned}
E\left[X^{2}\right] & =C \int_{\mathbb{R}} \frac{x^{2} d x}{\left(1+\frac{x^{2}}{n}\right)^{\frac{n}{2}+1}} \\
& =\frac{1}{\sqrt{\pi \Gamma\left(\frac{n}{2}\right)}}\left[\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{n-2}{2}\right) n\right] .
\end{aligned}
$$

Then for $n=3$, we have

$$
\begin{aligned}
E\left[X^{2}\right] & =\frac{1}{\sqrt{\pi} \Gamma\left(\frac{3}{2}\right)}\left[\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{2}\right) 3\right] \\
& =\frac{1}{\sqrt{\pi} \frac{1}{2} \sqrt{\pi}}\left[\frac{1}{2} \sqrt{\pi} \sqrt{\pi} 3\right] \\
& =3 \neq 1<\infty .
\end{aligned}
$$

(f) To show the power law tail, we just look at the asymptotic behavior of $f(x)$

$$
\begin{aligned}
f(x) & =\frac{C}{\left(1+\frac{(x-\mu)^{2}}{n \sigma^{2}}\right)^{\frac{n}{2}+1}} \\
& \approx C\left(1+x^{2}\right)^{-(n / 2+1)} \\
& \approx C x^{-p} .
\end{aligned}
$$

4. Rewrite in matrix form

$$
\binom{X_{n+1}}{X_{n}}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{5}{16} \\
1 & 0
\end{array}\right)\binom{X_{n}}{X_{n-1}}+\binom{1}{0} Z_{n} .
$$

The eigenvalues of matrix A are $\frac{1}{4} \pm \frac{1}{2} i$, and thus $|\lambda|<1$ that the Gaussian process is stable.

