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1. (Urn process) The urn process is a simple but not trivial one dimensional random walk. In later
classes we will come back to it to see how it goes over to the Ornstein Uhlenbeck process in the
limit m→∞, T →∞, but m and T related by a scaling that we will figure out.

(a) Calculate the transition probabilities ci = P (i→ i+1) and ai = P (i→ i− 1). Here i is the
number of red balls. The formulas depend on m (the total number of balls), and p (the probability
to put back a red ball).

Sol: The transition probability ci means that in this process you choose a red ball and replace
it with a blue ball, thus ci = m−i

m p. If one choose a blue ball and replace it with a red ball, then the
transition probability ai = i

m(1− p). Also

bi = P (i→ i)

=
m− i
m

(1− p) + i

m
p

= 1− ai − ci

(b) Figure out the forward equation for un+1,i in terms of un,i−1, un,i, and un,i+1, and the
numbers ai, bi, and ci from part a.

Sol: Let un,i := P (Xn = i), then the forward equation is a formula for the number

un+1,i = P (Xn+1 = i)

=
∑
y∈S

P (Xn+1 = i|Xn = y)P (Xn = y)

= un,i−1P (i− 1→ i) + un,iP (i→ i) + un,i+1P (i+ 1→ i)

= un,i−1ci−1 + un,ibi + un,i+1ai+1.

(c) Write the equations satisfied by the steady state probabilities πi. Show using algebra that
these equations are satisfied by (possibly a small variation on)

πi = pi(1− p)m−i
(
m
i

)
. (1)

The binomial coefficient is (
m
i

)
=

m!

i!(m− i)!
.

Hint: you can relate neighboring binomial coefficients using reasoning such as (approximately)(
m
i+ 1

)
=

m!

(i+ 1)!(m− i− 1)!
=
m− i
i+ 1

(
m
i

)
.

Sol: A probability distribution, π, is stationary, or steady state, or statistical steady state, if
un = π ⇒ un+1 = π. That is the same as saying that Xn ∼ π ⇒ Xn+1 ∼ π . The forward
equation implies that a stationary probability distribution must satisfy the equation π = πP , which
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determines π. Let us consider the equations

π0 = π0(1− p) + π1
1

m
(1− p)

π1 = π0p+ π1

(
1

m
p+

m− 1

m
(1− p)

)
+ π2

2

m
(1− p)

π2 = π1
m− 1

m
p+ π2

(
2

m
p+

m− 2

m
(1− p)

)
+ π3

3

m
(1− p)

...

...

πm = πm−1
1

m
p+ πmp,

combined with the constrain
∑

i πi = 1. Solving above system by the tridiagonal matrix algorithm
we would have

πi = pi(1− p)m−i
(
m
i

)
,

as claimed.
(d) Give a more conceptual derivation of the solution formula (1) as follows. Imagine that when

you start, all the balls in the urn are "stale". Each time you put a new ball in, that ball is "fresh".
The colors on the fresh balls are independent of each other, and each fresh ball has probability p of
being red. Eventually, all the balls will be fresh. When that happens, the probability distribution
of the number of red balls is binomial.

(e) Stirling’s formula is the approximation

n! ≈
√
2πnnne−n =

√
2πnen log(n)−n.

Use Stirling’s formula (treating it as exact) to write an approximate formula for πi when m, i, and
m− i are all large. Write this in the form

πi ≈
√

m

2πi(m− i)
e−φ(i,m).

Maximize φ over i (use calculus, differentiate with respect to i, ...). Show that you get i∗ ≈ pm,
and argue that this is the right answer, using part c if necessary. Make a quadratic approximation
to φ about i∗ and use that to make a Gaussian approximation to π. Just substitute i∗ into the
pre-factor. Do you get the same result as the CLT? Note (not an action item) that you find from
this a scaling that i− i∗ is on the order of

√
m.
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Sol: Straightforward calculation,

πi = pi(1− p)m−i m!

i!(m− i)!

≈
√

m

2πi(m− i)
em logm−m−i log i+i−(m−i) log(m−i)+(m−i)+i log p+(m−i) log(1−p)

=

√
m

2πi(m− i)
em logm+i log p

i
+(m−i) log 1−p

m−i

=

√
m

2πi(m− i)
exp

−
(
−m logm− i log p

i
− (m− i) log 1− p

m− i

)
︸ ︷︷ ︸

:=φ(i,m)


To maximize φ, we differentiate φ w.r.t. i,

∂iφ = log p− log i− 1− log(1− p) + log(m− i) + 1

= 0,

which means

p(m− i∗) = i∗(1− p),

and thus i∗ = pm.
Notice that

φ(i∗,m) = −m logm−mp log p

mp
− (m−mp) log 1− p

m−mp
= −2pm logm,

and

φ′′(i∗) =
1

σ2
.

Consider the Taylor expansion of φ(i) around i∗,

φ(i) ≈ φ(i∗) + φ′(i∗)(i− i∗) +
1

2
φ′′(i∗)(i− i∗)2 + h.o.t.

Then we can approximate

πi ≈ C exp

(
−φ(i∗) + φ′(i∗)(i− i∗) +

1

2
φ′′(i∗)(i− i∗)2 + h.o.t.

)
.

2. The ansatz method for solving equations is to guess the form of the solution, then find the
precise solution by plugging your guess into the equation. It is not always satisfying, but it is
great when it works. Consider a simple random walk on Z with transition probabilities a, b, and c
independent of i.

(a) Write the backward equation for this process.
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Sol:

fn,i = E [fn+1| Fn] (xn = i)

=
∑

xn+1∈S
P (Xn+1 = xn+1|Xn = xn) fn+1(xn+1)

= afn+1(xn+1 = i− 1) + bfn+1(xn+1 = i) + cfn+1(xn+1 = i+ 1)

= afn+1,i−1 + bfn+1,i + cfn+1,i+1. (2)

(b) Show that the backward equation has solutions of the form fn,i = αn + (i− βn)2. Find the
recurrence relations for αn and βn in terms of αn+1 and βn+1.

Sol: Plugging fn,i into (2),

αn + (i− βn)2 = aαn+1 + a(i− 1− βn+1)
2 + bαn+1 + b(i− βn+1)

2 + cαn+1 + c(i+ 1− βn+1)
2.

(c) Directly from the process, derive equations for µn = E [Xn], and σ2n = var (Xn) . You may
assume µ0 = 0 and σ0 = 0.

Sol:

µ1 = c− a
σ21 = c+ a− (c− a)2

µ2 = 2a2 + 2ab− 2bc− 2c2

= 2 [(a+ c) (a− c) + b (a− c)]
= 2 (a− c) (a+ b+ c)

= 2 (a− c)
σ22 = 4a2 + 4c2 + 2bc+ 2ab− 4 (a− c)2

= 2bc+ 2ab+ 8ac

= 2(1− a− c)(a+ c) + 8ac

= 2(a+ c− a2 − 2ac− c2) + 8ac

= 2(c+ a)− 2(a2 − 4ac+ c2)

= 2
[
c+ a− (c− a)2

]
...
...

We can conclude that,

µn =

n∑
i=1

µi

= n (c− a) ,

and

σ2n = n
[
c+ a− (c− a)2

]
.

(d) Show that parts (b) and (c) are consistent, using the definition of the quantity fn,i in the
backward equation.
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