
Stochastic Calculus, Courant Institute, Fall 2012
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2012/index.html
Always check the class message board on the blackboard site from home.nyu.edu before doing any
work on the assignment.

Assignment 3, due October 1

Corrections: (none yet.)

1. (Time change) This exercise gives a way to turn a Brownian motion into an
Ornstein Uhlenbeck process. Suppose Wt is a standard Brownian motion
with E[∆W |Ft] = 0 and E

[
∆W 2|Ft

]
= ∆t. Here ∆W = Wt+∆t −Wt,

and ∆t > 0. The distribution of Wt has width approximately
√
t, which

grows as t → ∞ and goes to zero as t → 0. The Ornstein Uhlenbeck
process has a statistical steady state, so its width is not suppose to go to
infinity or zero as t → ∞. A function with width (t−1/2 ·

√
t), such as

Yt = t−1/2Wt, should approximately independent of t. A time change is
a function t = t(s) with t′(s) = ∂st(s) > 0 when t > 0. A time change
applied to Yt gives Xs = Yt(s).

(a) Define ∆Y = Yt+∆t − Yt with ∆t > 0. Find formulas for µY and
σ2
Y so that E[∆Y |Ft] = µY ∆t+ (smaller) and E

[
∆Y 2|Ft

]
= σ2

Y ∆t+
(smaller). By “(smaller)”, we mean something that goes to zero faster
than ∆t, as ∆t→ 0. For example,

√
t+ ∆t−

√
t = 1

2
√
t
∆t+O(∆t2).

Here, f(∆t) = O(∆t2) means that there is a C and an ε so that if
∆t ≤ ε, then f(∆t) ≤ C∆t2. This is the “ big O” notation, and
O(∆t2) is read: “on the order of ∆t2”. For this problem, (smaller) is
the same as O(∆t2). The errors in Taylor series are like this most of
the time. This is the mathematicians’ idea of order, which refers to
scaling rather than size.
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Sol: Let us consider the infinitesimal mean first

E [∆Y |Ft] = E [Yt+∆t − Yt|Ft]

= E
[

1√
t+4t

Wt+4t −
1√
t
Wt

∣∣∣∣Ft

]
= E

[
1√

t+4t
(Wt+4t −Wt) +

(
1√

t+4t
− 1√

t

)
Wt

∣∣∣∣Ft

]
=

1√
t+4t

E [ (Wt+4t −Wt)| Ft]︸ ︷︷ ︸
=0

+E
[(

1√
t+4t

− 1√
t

)
Wt

∣∣∣∣Ft

]

= E
[(

1√
t+4t

− 1√
t

)
Wt

∣∣∣∣Ft

]
= E

[(
−1

2
t−

3
24t+

3

8
(4t)2 +O((4t)3)

)
Wt

∣∣∣∣Ft

]
= E

[(
−1

2
t−1Yt4t+

3

8
t−

5
2 (4t)2Wt +O((4t)3)Wt

)∣∣∣∣Ft

]
= − 1

2t
Yt4t+O(4t2).

Similarly, we have

E
[
∆Y 2|Ft

]
= E




1√
t

(Wt+4t −Wt) +

(
1√

t+4t
− 1√

t

)
︸ ︷︷ ︸
=− 1

2 t
− 3

24t+ 3
8 (4t)2

Wt+4t


2∣∣∣∣∣∣∣∣∣∣∣
Ft


= E

[
1

t
(Wt+4t −Wt)

2 − 2
1

2
t−

5
2 (Wt+4t −Wt)Wt+4t4t+O(4t2)

∣∣∣∣Ft

]
=

1

t
4t− 2

1

2
t−

5
24tE [Wt+4t −Wt| Ft]︸ ︷︷ ︸

=0

E [Wt+4t| Ft] +O(4t2)

=
1

t
4t+O(4t2).

(b) (Please do this before the next part) Speculate on the sizes ∆Yt for
fixed ∆t and large t. Is Yt changing rapidly or slowly for large t? The
rate of change of the Ornstein Uhlenbeck process is roughly constant
for all time. If we want Xs to be an Ornstein Uhlenbeck process,
should we look for ∆t� ∆s or ∆t� ∆s?
Sol: Since Yt ∼

√
t · 1√

t
= C, for some constant C, Yt changes slowly

for large t. If we fix 4t and let t large, then the change of Yt, namely
4Y has mean and vairance both 0. Supposed that 4t � 4s, then
t′(s) ≈ 4t

4s ≈ 0, which means t(s) is constant as s changes. So
Xs = Yt(s)=c ≈ C. Therefore, if we want Xs to be an Ornstein
Uhlenbeck process, we must look for 4t�4s.
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(c) Write a formula for σ2
X in

E
[

(Xs+∆s −Xs)
2
∣∣∣Ft

]
= E

[(
Yt(s)+∆t(∆s) − Yt(s)

)2∣∣∣Ft

]
= ∆sσ2

X + (smaller)

= ∆tσ2
Y + (smaller)

in terms of ∆s and ∆t = t(s+ ∆s)− t(s) ≈ t′(s)∆s. Find and solve
the differential equation for t(s) so that σ2

X does not depend on s.
Does your quantitative solution here agree with the qualitative guess
from part (b)?
Sol:

E
[

(Xs+∆s −Xs)
2
∣∣∣Ft

]
= E

[(
Yt(s)+∆t(∆s) − Yt(s)

)2∣∣∣Ft

]
=

1

t(s)
4t(∆s) +O(4t2)

=
1

t(s)
t′(s)∆s+O(∆s2).

Assume that σ2
X is independent to s, namely

1

t(s)
t′(s) = c > 0,

since by assumption t′(s) > 0, which gives t = ecs. So 4t indeed
�4s.
To see how ∆t and ∆s are related, note that

∆t = t(s+ ∆s)− t(s)
= ec(s+∆s) − ecs

ln(t+ ∆t)− ln t = c(s+ ∆s)− cs
= c∆s

∆s =
1

c
ln

(
t+ ∆t

t

)
.

(d) With the time change from part (c), find a formula for µX(Xs) so
that E[Xs+∆s −Xs|Fs] = µX(Xs)∆s + (smaller). Does this imply
that Xs is an Ornstein Uhlenbeck process?
Sol: Consider

E [Xs+∆s −Xs| Ft] = − 1

2t(s)
Xt(s)t

′(s)4s+O(4t2)

= − c
2
Xs4s+O(4t2).

An Ornstein–Uhlenbeck process, Xt, satisfies the following stochastic
differential equation

dXt = θ(µ−Xt)dt+ σdWt
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where θ > 0, µ and σ > 0 are parameters and denotesWt the Wiener
process. The above representation can be taken as the primary def-
inition of an Ornstein–Uhlenbeck process. Here we know from part
(c), E

[
(dXs)

2
]

= constant · ds. Also

2. (Moving toward Ito’s lemma) This exercise explores some of the ideas that
lead to Ito’s lemma. The full Ito lemma asks you to take a large number
of time steps. This exercise this week explains what happens in one step.

(a) Suppose Y ∼ N (0, ε). Find the scaling laws for mk = E
[
|Y |k

]
.

Hint #1 ( You don’t need to do it both ways): Write the probability
density for Y and do a change of variables to make the density inde-
pendent of ε, then see how ε comes out of the expectation integral.
It will be a power of ε.
Hint #2: ( the easier way, but really equivalent) Write Y = εpZ
where Z ∼ N (0, 1), and see what power of ε you need to get the
right Y distribution. Then mk = εrkE

[
|Z|k

]
, where the expectation

now is just a number that does not depend on ε. Write the explicit
formula for m4, which we saw in assignment 1.
Sol: #1. Straightforward computation letting y/

√
2ε = z,

mk =
1√
2πε

ˆ ∞
−∞
|y|ke−

y2

2ε dy

=
1√
2πε

ˆ ∞
−∞

√
2ε
∣∣∣√2εz

∣∣∣ ke−z2

dz

=
(2ε)

k/2

√
π

ˆ ∞
−∞
|z| ke−z

2

dz

=
(2ε)

k/2

√
π

ˆ ∞
−∞

1

2
u−

1
2 |u| k2 e−udu

=
(2ε)

k/2

√
π

ˆ ∞
0

u
k+1
2 −1e−udu

=
(2ε)

k/2

√
π

Γ(
k + 1

2
)

= ε
k
2 (k − 1)(k − 3) · · ·

withe the odd moments all are zero. Therefore,

m4 =
(2ε)

4/2

√
π

Γ(
4 + 1

2
)

=
4ε2√
π

3

4

√
π

= 3ε2.
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(b) Suppose f(w) is a differentiable function, and Xt = f(Wt), with Wt

being a standard Brownian motion. Find formulas for µX and σ2
X so

that

µX(Wt)∆t = E[∆X | Ft] + (smaller)

σ2
X(Wt)∆t = E

[
∆X2 | Ft

]
+ (smaller) .

The formulas for µ and σ2 will depend on f ′(Wt) and f ′′(Wt). You
will need to use the result of part (a) to justify not needing more
derivatives of f . You need to show that contributions from these
terms are (smaller).
Sol: Notice that from Ito,

dXt = f ′(Xt)dWt +
1

2
f ′′(Xt)dt.

Thus

E [4X | Ft] = E [Xt+4t −Xt | Ft]

= E [f(Wt+4t)− f(Wt) | Ft]

= E
[
f ′ (Wt) (Wt+4t −Wt) +

1

2!
f ′′ (Wt) (Wt+4t −Wt)

2
+ h.o.t | Ft

]
=

1

2!
f ′′ (Wt)4t+O(4t2).

Also,

E
[
4X2 | Ft

]
= E

[
(f(Wt+4t)− f(Wt))

2
∣∣∣Ft

]
= E

[
(f ′ (Wt))

2
(Wt+4t −Wt)

2
+ h.o.t

∣∣∣Ft

]
= (f ′ (Wt))

24t+O(4t2).

3. (Integrals of Brownian motion) Some integrals involving Brownian motion
can be done just by calculating means and variances. Suppose W[0,T ] is a
standard Brownian motion path up to time t. Define

X =

ˆ T

0

t2Wt dt .

This X is a linear function of the Gaussian Brownian motion path so
X is a Gaussian random variable. You determine the distribution of X
completely by determining its mean and variance.

(a) Find a formula for cov(Wt,Ws) = E[WtWs]. Hint: Assume at first
that t > s and writeWt = Ws+(Wt−Ws), then use the independent
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increments property.
Sol: Suppose that t > s,

cov(Wt,Ws) = E [WtWs]

= E
[
W 2

s + (Wt −Ws)Ws

]
= E

[
W 2

s

]
+ E [(Wt −Ws)]E [Ws]︸ ︷︷ ︸

=0

= s.

Same trick we must have cov(Wt,Ws) = t for t < s; namely cov(Wt,Ws) =
min(t, s).

(b) Find var(X). WriteX2 =
´ T

0
t2Wtdt

´ T
0
s2Wsds =

´ T
0

´ T
0
t2s2WtWsdtds.

E
[
X2
]
now is the expectation of a double integral, and you can take

the expectation inside the integral and use the result of part (a).
Sol: Correction,

var(X) =E
[
X2
]
− (E [X])

2

=

ˆ T

0

ˆ T

0

t2s2E [WtWs] dtds−

(ˆ T

0

t2Wtdt

)2

=

ˆ T

0

ˆ s

0

t3s2dtds+

ˆ T

0

ˆ T

s

t2s3dtds− 0

=

ˆ T

0

s2

ˆ s

0

t3dtds+

ˆ T

0

s3

ˆ T

s

t2dtds

=
1

4

T 7

7
+

1

3

(
T 7

4
− T 7

7

)
=
T 7

14
.
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Previous version,

var
(
X2
)

=E
[
X4
]
−
(
E
[
X2
])2

=

ˆ T

0

ˆ T

0

t4s4E [WtWs] dtds−

(ˆ T

0

ˆ T

0

t2s2E [WtWs] dtds

)2

=

ˆ T

0

ˆ s

0

t5s4dtds+

ˆ T

0

ˆ T

s

t4s5dtds−

(ˆ T

0

ˆ s

0

t3s2dtds+

ˆ T

0

ˆ T

s

t2s3dtds

)2

=
1

6

ˆ T

0

s10ds+
1

5

ˆ T

0

s5
(
T 5 − s5

)
ds−

(ˆ T

0

s2

ˆ s

0

t3dtds+

ˆ T

0

s3

ˆ T

s

t2dtds

)2

=
1

6

T 11

11
+

1

5

(
T 11

6
− T 11

11

)
−
(

1

4

T 7

7
+

1

3

(
T 7

4
− T 7

7

))2

=
T 11

33
−
(
T 7

14

)2

.

4. (computing) This assignment explores the properties of Brownian Motion
and the Ornstein Uhlenbeck process via simulation. It also introduces you
to the slowness of Monte Carlo simulation in general. You have to push
the computer pretty hard to get good looking plots. The slowness of R
does not help.

This program generates L sample Brownian motion or Ornstein Uhlenbeck
paths, all independent, each with time step dt = T/N , where T is the
end of the time interval and N is the number of time steps, so tN =
T . Let W[0,T ] be a path, and Y = F (w[0,T ]) a function of the path.
This assignment just makes histograms of the distributions of various path
functionals.

(a) Download the files Assignment3.R and AssignmentStart3.pdf. If
you run the R program “out of the box” (exactly as downloaded, all
parameters unchanged), you should get a picture that looks like the
picture, possibly with different noise. Actually, you need to change
one parameter, the name of the directory for the output plot .pdf
file. This makes a histogram of

F (W[0,T ]) = MT = max
0≤t≤T

Wt .

The picture Assignment3.pdf is a normalized histogram that esti-
mates the probability density, f(m), of the random variable MT .
Next week we will use the Kolomogorov reflection principle to find
a formula for f(m). This week’s picture agrees with next week’s
formula, hopefully.

(b) The out-of-the-box picture is not very clear. Try to make it clearer
by turning up the computational parameters N and L. Larger N
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reduces the spurious high value at m = 0 and “rounds out” the rest
of the picture. We will learn later how it does this. Larger L reduces
statistical noise so you can see the curve more clearly. Do this until
the run time is more than you have patience for. You will learn two
of the prime drawbacks of Monte Carlo: it is slow; it is noisy.

(c) The code out-of-the-box has partly implemented the study of the
distribution of WT conditional on Wt ≤ B for all t ∈ [0, T ]. Use
the T = 20. If you simulate Brownian motion and only count paths
that do not touch a barrier, you are simulating Brownian motion
with an absorbing boundary at B. Modify the R code to estimate the
probability density ofWT conditional on not hitting B before T . You
will have to change the parameter bs (the starting bin) and possibly
other things having to do with generating the histogram. Push the
computation to get the clearest picture you can with the computer
and time constraints you have. Next week we will find a formula for
this distribution.

(d) Modify the program to simulate the Ornstein Uhlenbeck process with
σ = 2 and γ = .1. Start with X0 = 2. On one plot, put the
distributions of XT for T = 5 and T = 10, both the normalized
histograms and the exact formulas for the probability densities. Copy
some code from Assignment2.R to put multiple plots in the same
frame. The exact formulas are from class.
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