Assignment 4, due October 7

Corrections: (none yet)

1. (Brownian motion with reflection) A reflecting Brownian motion, with a reflecting barrier at $x=a$, is a stochastic process that never crosses a and does not stick to a. For $X_{t} \neq a, X_{t}$ acts like a Brownian motion. Suppose $X_{0}=0$ and $a>0$. A reflecting Brownian motion has a probability density, $X_{t} \sim u(x, t)$, that satisfies the heat equation if $x<a$, and has

$$
\begin{equation*}
\int_{-\infty}^{a} u(x, t) d x=1 \tag{1}
\end{equation*}
$$

(a) The conservation formula (1) implies a boundary condition that u satisfies at $x=a$. What is this condition? Hint: What must the probability flux be at $x=a$? This boundary condition is called a reflecting boundary condition. For wikipedia lovers, it is also called a Neumann boundary condition.

Sol: Differentiating $u(x, t)$ with respect to time t and using the heat equation,

$$
\begin{aligned}
\frac{d}{d t} \int_{-\infty}^{a} u(x, t) d x & =\int_{-\infty}^{a} u_{t}(x, t) d x \\
& =\frac{1}{2} \int_{-\infty}^{a} u_{x x}(x, t) d x \\
& =\frac{1}{2}\left(u_{x}(a, t)-u_{x}(-\infty, t)\right) \\
& =0
\end{aligned}
$$

Since the heat kernel goes to 0 as $x \rightarrow-\infty$, we have found the Neumann boundary condition

$$
u_{x}(a, t)=0
$$

(b) Show that if $v(x)$ is symmetric about the point a, which is the condition $v(a-x)=v(a+x)$ for all x, and if v is a smooth function of x, then v satisfies the boundary condition from part a.

Sol: If $v(x)$ is symmetric about a, then $v(a-x)=v(a+x)$ and thus

$$
\partial_{x} v(a-x)=v^{\prime}(a-x) \cdot(-1)=v^{\prime}(a+x) \cdot 1=\partial_{x} v(a+x) .
$$

Substituting $x=0$ into above equation, $-v^{\prime}(a)=v^{\prime}(a)$, which implies

$$
v_{x}(a)=0
$$

(c) Use the method of images from this week's material to write a formula for the $u(x, t)$ that satisfies the correct initial condition for $X_{0}=0$ and boundary condition at $a>0$. It is closely related to the formula from class.

Sol: We want a function $u(x, t)$ that is defined for $x<a$ that satisfies the initial condition $u(x, t) \rightarrow \delta(x)$ as $t \rightarrow 0$, for $(x<a)$ and the reflexing boundary condition $u_{x}(a, t)=0$. Since from (b) we know if $v(x)$ symmetric about a, then v satisfies this boundary condition. We extend the definition of u by symmetric,

$$
u(a+x, t)=u(a-x, t)
$$

or saying $x^{\prime}=2 a-x$ and we have

$$
u\left(x^{\prime}, t\right)=u(x, t)
$$

The resulting initial data becomes

$$
u(x, 0)=\delta(x)+\delta(2 a-x)
$$

The initial data has changed, but the part for $x<a$ is the same. The solution is the superposition of the pieces from the two delta functions:

$$
u(x, t)=\frac{1}{\sqrt{2 \pi t}}\left(e^{-x^{2} / 2 t}+e^{-(2 a-x)^{2} / 2 t}\right)
$$

Notice that from notes

$$
\int_{a}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t} d x=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi t}} e^{-(x-2 a)^{2} / 2 t} d x
$$

therefore

$$
\begin{aligned}
\int_{-\infty}^{a} u(x, t) d x & =\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{a}\left(e^{-x^{2} / 2 t}+e^{-(2 a-x)^{2} / 2 t}\right) d x \\
& =\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{a} e^{-x^{2} / 2 t} d x+\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{a} e^{-(x-2 a)^{2} / 2 t} d x \\
& =\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t} d x+\int_{a}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t} d x \\
& =1
\end{aligned}
$$

Also the Neumann boundary condition,

$$
\begin{aligned}
u_{x}(a, t) & =\left.\frac{1}{\sqrt{2 \pi t}}\left(-\frac{2 x}{2 t} e^{-x^{2} / 2 t}+\frac{2(2 a-x)}{2 t} e^{-(2 a-x)^{2} / 2 t}\right)\right|_{x=a} \\
& =\frac{1}{\sqrt{2 \pi t}}\left(-\frac{a}{t} e^{-a^{2} / 2 t}+\frac{a}{t} e^{-a^{2} / 2 t}\right)=0
\end{aligned}
$$

(d) Write a formula for $m_{t}=\mathrm{E}\left[X_{t}\right]$ for reflecting Brownian motion. The cumulative normal distribution is $N(z)=\mathrm{P}(Z \leq z)$, when $Z \sim$ $\mathcal{N}(0,1)$. Derive a formula for m_{t} in terms of this and other explicit functions. Verify that m_{t} is exponentially small for small t. Verify that $m_{t} \rightarrow \infty$ as $t \rightarrow \infty$ and scales as $t^{1 / 2}$.

Sol: Consider the change of variables, $z_{1}=x / \sqrt{t}$ and $z_{2}=(x-$ $2 a) / \sqrt{t}$, then

$$
\begin{aligned}
\mathrm{E}\left[X_{t}\right] & =\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{a} x e^{-x^{2} / 2 t}+x e^{-(2 a-x)^{2} / 2 t} d x \\
& =\frac{\sqrt{t}}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{a}{\sqrt{t}}} z_{1} e^{-z_{1}^{2} / 2} d z_{1}+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\frac{a}{\sqrt{t}}}\left(\sqrt{t} z_{2}+2 a\right) e^{-z_{2}^{2} / 2} d z_{2} \\
& =\frac{\sqrt{t}}{\sqrt{2 \pi}}\left(-\left.e^{-\frac{z_{1}^{2}}{2}}\right|_{z_{1}=-\infty} ^{z_{1}=\frac{a}{\sqrt{t}}}\right)+\frac{\sqrt{t}}{\sqrt{2 \pi}}\left(-\left.e^{-\frac{z_{2}^{2}}{2}}\right|_{z_{2}=-\infty} ^{z_{2}=-\frac{a}{\sqrt{t}}}\right)+\frac{2 a}{\sqrt{2 \pi}} N\left(-\frac{a}{\sqrt{t}}\right) \\
& =\sqrt{\frac{2}{\pi}}\left[a N\left(-\frac{a}{\sqrt{t}}\right)-\sqrt{t} e^{-\frac{a^{2}}{2 t}}\right]
\end{aligned}
$$

Notice that as $t \rightarrow \infty$,

$$
\begin{aligned}
m_{t} & \rightarrow \sqrt{\frac{2}{\pi}}\left[a N(0)-\sqrt{t}\left(1-\frac{a^{2}}{2 t}+\mathcal{O}\left(t^{-2}\right)\right)\right] \\
& \rightarrow-\infty
\end{aligned}
$$

(e) It is argued (possibly later in this course, or the book Stochastic Integrals by Henry McKean) that a reflecting Brownian motion is kept inside the allowed region $\{x \leq a\}$ by a rightward force at the reflecting boundary. This force is different from zero only when $X_{t}=a$. The force is just strong enough to prevent $X_{t}>a$. This picture suggests that the total force is proportional to the total time spent at the boundary. Since only the boundary force has a preferred direction, if $X_{0}=0$, it may be that

$$
\mathrm{E}\left[X_{t}\right]=\mathrm{E}\left[\int_{0}^{t} F_{s} d s\right]
$$

both sides being negative. Since the force only acts when $X_{t}=a$, it may be plausible that $\mathrm{E}\left[F_{s}\right]=C u(a, s)$. Verify that this picture is
true, at least as far as the formula

$$
m_{t}=-C \int_{0}^{t} u(a, s) d s
$$

Find $C>0$.
Sol: Supposed that

$$
\begin{aligned}
m_{t} & =-C \int_{0}^{t} \frac{1}{\sqrt{2 \pi s}}\left(e^{-a^{2} / 2 s}+e^{-a^{2} / 2 s}\right) d s \\
& =\sqrt{\frac{2}{\pi}}\left[a N\left(-\frac{a}{\sqrt{t}}\right)-\sqrt{t} e^{-\frac{a^{2}}{2 t}}\right]
\end{aligned}
$$

Then differentiate above with respect to t,

$$
\begin{aligned}
\frac{d}{d t} m_{t} & =-C \frac{1}{\sqrt{2 \pi t}}\left(e^{-a^{2} / 2 t}+e^{-a^{2} / 2 t}\right) \\
& =-C t^{-\frac{1}{2}} \sqrt{\frac{2}{\pi}} e^{-a^{2} / 2 t}
\end{aligned}
$$

which equals to

$$
\begin{aligned}
\frac{d}{d t} \sqrt{\frac{2}{\pi}}\left[a N\left(-\frac{a}{\sqrt{t}}\right)-\sqrt{t} e^{-\frac{a^{2}}{2 t}}\right] & =\sqrt{\frac{2}{\pi}}\left[a \frac{d}{d t} N\left(-\frac{a}{\sqrt{t}}\right)-\frac{d}{d t} \sqrt{t} e^{-\frac{a^{2}}{2 t}}\right] \\
& =\sqrt{\frac{2}{\pi}}\left[a e^{-\frac{a^{2}}{2 t}} \frac{d}{d t}\left(-\frac{a}{\sqrt{t}}\right)-\left(\frac{d}{d t} \sqrt{t}\right) e^{-\frac{a^{2}}{2 t}}-\sqrt{t}\left(\frac{d}{d t} e^{-\frac{a^{2}}{2 t}}\right)\right] \\
& =\sqrt{\frac{2}{\pi}}\left[a e^{-\frac{a^{2}}{2 t}}\left(\frac{1}{2} a t^{-\frac{3}{2}}\right)-\left(\frac{1}{2} t^{-\frac{1}{2}}\right) e^{-\frac{a^{2}}{2 t}}-t^{\frac{1}{2}}\left(t^{-2} \frac{a^{2}}{2} e^{-\frac{a^{2}}{2 t}}\right)\right] \\
& =-\frac{1}{2} t^{-\frac{1}{2}} \sqrt{\frac{2}{\pi}} e^{-\frac{a^{2}}{2 t}}
\end{aligned}
$$

So $C=\frac{1}{2}$ if I did nothing wrong.
2. (Kolomogorov reflection principle) Let X_{n} be a discrete time symmetric random walk on the integers, positive and negative. The random walk is symmetric if $\mathrm{P}(x \rightarrow x+1)=\mathrm{P}(x \rightarrow x-1)$. Suppose the walk starts with $X_{0}=0$. Let $H_{a}(t)=\mathrm{P}\left(X_{n}=a\right.$ for some $\left.n \leq t\right)$ be the hitting probability for this discrete process. Show that if $a>0$, then

$$
\begin{equation*}
\mathrm{P}\left(H_{a}(t)\right)=\mathrm{P}\left(X_{t}=a\right)+2 \mathrm{P}\left(X_{t}>a\right) \tag{2}
\end{equation*}
$$

Hint: The discrete time version of the argument from class is rigorous.
Sol: For one dimensional symmetric random walk starting at $X_{0}=0$, we define the first hitting time

$$
\tau_{a}=\min \left\{t \mid X_{t}=a\right\}
$$

We consider the reflecting random walk

$$
Y_{t}= \begin{cases}X_{t} & \text { if } t \leq \tau_{a} \\ 2 a-X_{t} & \text { if } t>\tau_{a}\end{cases}
$$

Now consider the event $\tau_{a}<t$. On this event, Y_{t} and X_{t} are on opposite sides of a, unless they are both at a, and they correspond under reflection. Moreover, both processes are simple random walks, so for any $k \geq 0$,

$$
\mathrm{P}\left(Y_{t}=a+k\right)=\mathrm{P}\left(X_{t}=a+k\right)
$$

Note the event $X_{t}=a+t$ is impossible unless $\tau_{a}<t$. So

$$
\begin{aligned}
\mathrm{P}\left(Y_{t}=a+k\right) & =\mathrm{P}\left(X_{t}=a+k \text { and } \tau_{a}<\mathrm{t}\right) \\
& =\mathrm{P}\left(Y_{t}=a+k \text { and } \tau_{a}<\mathrm{t}\right) \\
& =\mathrm{P}\left(X_{t}=a-k \text { and } \tau_{a}<\mathrm{t}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{P}\left(\tau_{a}<t\right)= & \sum_{k=-\infty}^{\infty} \mathrm{P}\left(X_{t}=a+k \text { and } \tau_{a}<\mathrm{t}\right) \\
= & \sum_{k=-\infty}^{-1} \mathrm{P}\left(X_{t}=a+k \text { and } \tau_{a}<\mathrm{t}\right)+\mathrm{P}\left(X_{t}=a \text { and } \tau_{a}<\mathrm{t}\right) \\
& +\sum_{k=1}^{\infty} \mathrm{P}\left(X_{t}=a+k \text { and } \tau_{a}<\mathrm{t}\right) \\
= & \mathrm{P}\left(X_{t}=a\right)+\mathrm{P}\left(X_{t}>a\right)+\mathrm{P}\left(X_{t}<a\right) \\
= & \mathrm{P}\left(X_{t}=a\right)+2 \mathrm{P}\left(X_{t}>a\right)
\end{aligned}
$$

3. (Brownian bridge construction of Brownian motion) Suppose X_{t} is a standard Brownian motion. Suppose $0 \leq t_{1}<t_{2}<t_{3}$.
(a) Write the two dimensional PDF of $\left(X_{t_{2}}, X_{t_{3}}\right)$ conditional on $X_{t_{1}}$. Call it $u\left(x_{2}, x_{3}, s_{2}, s_{3} \mid x_{1}\right)$, where x_{j} refers to the value of $X_{t_{j}}$ and $s_{1}=t_{2}-t_{1}$ and $s_{2}=t_{3}-t_{2}$. These are the time increments between t_{1} and t_{2}, and t_{2} and t_{3}, respectively.

Sol: Recall that if $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{t}$ be a two dimensional Gaussian vector with covariance matrix Σ^{2}. Then the joint density of \mathbf{Y} is given by

$$
f_{\mathbf{Y}}(\mathbf{y})=\frac{1}{2 \pi \operatorname{det} \Sigma} e^{-\mathbf{y}^{t}(\Sigma)^{-1} \mathbf{y} / 2}
$$

Let $\mathbf{X}=\left[X_{t_{1}}, X_{t_{2}}, X_{t_{3}}\right]$ with $0 \leq t_{1}<t_{2}<t_{3}$. The covariance matrix,

$$
\begin{aligned}
\sigma^{2} & =\left[\begin{array}{ccc}
\operatorname{Cov}\left(X_{t_{1}}, X_{t_{1}}\right) & \operatorname{Cov}\left(X_{t_{1}}, X_{t_{2}}\right) & \operatorname{Cov}\left(X_{t_{1}}, X_{t_{3}}\right) \\
\operatorname{Cov}\left(X_{t_{2}}, X_{t_{1}}\right) & \operatorname{Cov}\left(X_{t_{2}}, X_{t_{2}}\right) & \operatorname{Cov}\left(X_{t_{2}}, X_{t_{3}}\right) \\
\operatorname{Cov}\left(X_{t_{3}}, X_{t_{1}}\right) & \operatorname{Cov}\left(X_{t_{3}}, X_{t_{2}}\right) & \operatorname{Cov}\left(X_{t_{3}}, X_{t_{3}}\right)
\end{array}\right] \\
& =\left[\begin{array}{lll}
t_{1} & t_{1} & t_{1} \\
t_{1} & t_{2} & t_{2} \\
t_{1} & t_{2} & t_{3}
\end{array}\right] .
\end{aligned}
$$

The determinant is $t_{1}\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)=t_{1} s_{1} s_{2}$. The inverse is horrible. Clearly, this is not the ideal way to proceed. Let's see if we can do otherwise. The two dimensional density of $\left(X_{t_{2}}, X_{t_{3}}\right)$ conditional on $X_{t_{1}}$ can be determined from the fact the distribution of $\mathbf{Y}_{1} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{1}}, \boldsymbol{\Sigma}_{\mathbf{1}}\right)$ conditional on $\mathbf{Y}_{2} \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{2}}, \boldsymbol{\Sigma}_{\mathbf{2}}\right)$ is multivariate nor$\operatorname{mal}\left(\mathbf{Y}_{1} \mid \mathbf{Y}_{\mathbf{2}}=\mathbf{y}_{\mathbf{2}}\right) \sim \mathcal{N}(\overline{\boldsymbol{\mu}}, \overline{\boldsymbol{\Sigma}})$ where

$$
\begin{aligned}
& \bar{\mu}=\boldsymbol{\mu}_{\mathbf{1}}+\boldsymbol{\Sigma}_{\mathbf{1 2}} \boldsymbol{\Sigma}_{\mathbf{2 2}}^{-\mathbf{1}}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right) \\
& \bar{\Sigma}=\boldsymbol{\Sigma}_{\mathbf{1 1}}-\boldsymbol{\Sigma}_{\mathbf{1 2}} \boldsymbol{\Sigma}_{\mathbf{2 2}}^{-\mathbf{1}} \boldsymbol{\Sigma}_{\mathbf{2 1}}
\end{aligned}
$$

Therefore, the covariance matrix

$$
\begin{aligned}
\mathrm{E}\left[X_{t_{2}}, X_{t_{3}} \mid X_{t_{1}}=x_{1}\right] & =\left[\begin{array}{c}
\mathrm{E} X_{t_{2}} \\
\mathrm{E} X_{t_{3}}
\end{array}\right]+\left[\begin{array}{c}
\operatorname{Cov}\left(X_{t_{2}}, X_{t_{1}}\right) \\
\operatorname{Cov}\left(X_{t_{3}}, X_{t_{1}}\right)
\end{array}\right] \frac{1}{\mathrm{E} X_{t_{1}}^{2}}\left(x_{1}-\mathrm{E} X_{t_{1}}\right) \\
& =\left[\begin{array}{c}
\mathrm{E} X_{t_{2}} \\
\mathrm{E} X_{t_{3}}
\end{array}\right]+\left[\begin{array}{c}
t_{1} \\
t_{1}
\end{array}\right] \frac{1}{t_{1}}\left(x_{1}-\mathrm{E} X_{t_{1}}\right) \\
& =\left[\begin{array}{l}
x_{1} \\
x_{1}
\end{array}\right]
\end{aligned}
$$

Also, the variance is

$$
\begin{aligned}
\mathrm{V}\left[X_{t_{2}}, X_{t_{3}} \mid X_{t_{1}}=x_{1}\right] & =\left[\begin{array}{cc}
\operatorname{Cov}\left(X_{t_{2}}, X_{t_{2}}\right) & \operatorname{Cov}\left(X_{t_{2}}, X_{t_{3}}\right) \\
\operatorname{Cov}\left(X_{t_{3}}, X_{t_{2}}\right) & \operatorname{Cov}\left(X_{t_{3}}, X_{t_{3}}\right)
\end{array}\right] \\
& -\left[\begin{array}{c}
\operatorname{Cov}\left(X_{t_{2}}, X_{t_{1}}\right) \\
\operatorname{Cov}\left(X_{t_{3}}, X_{t_{1}}\right)
\end{array}\right] \frac{1}{\operatorname{EX} X_{t_{1}}^{2}}\left[\begin{array}{c}
\operatorname{Cov}\left(X_{t_{1}}, X_{t_{2}}\right) \\
\operatorname{Cov}\left(X_{t_{1}}, X_{t_{3}}\right)
\end{array}\right]^{t} \\
& =\left[\begin{array}{cc}
t_{2} & t_{2} \\
t_{2} & t_{3}
\end{array}\right]-\left[\begin{array}{c}
t_{1} \\
t_{1}
\end{array}\right] \frac{1}{t_{1}}\left[\begin{array}{ll}
t_{1} & t_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
t_{2}-t_{1} & t_{2}-t_{1} \\
t_{2}-t_{1} & t_{3}-t_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
s_{1} & s_{1} \\
s_{1} & s_{1}+s_{2}
\end{array}\right]
\end{aligned}
$$

The determinant of V is $s_{1} s_{2}$ and with inverse $\frac{1}{s_{1} s_{2}}\left[\begin{array}{cc}s_{1}+s_{2} & -s_{1} \\ -s_{1} & s_{1}\end{array}\right]$.
$u\left(x_{2}, x_{3}, s_{2}, s_{3} \mid x_{1}\right)=\frac{1}{2 \pi s_{1} s_{2}} \exp \left(-\frac{\left(s_{1}+s_{2}\right) x_{2}^{2}-2 s_{1} x_{2} x_{3}+s_{1} x_{3}^{2}}{2 s_{1} s_{2}}\right)$.
(b) Conditional on $X_{t_{1}}=x_{1}$ and $X_{t_{3}}=x_{3}$, find the distribution of $X_{t_{2}}$. This is $\mathcal{N}\left(\mu, \sigma^{2}\right)$ for some μ and σ^{2} that depend on x_{1}, x_{3}, s_{1}, and s_{2}. Hint: The conditional density of $X_{t_{2}}$ is the exponential of a quadratic. Identify the mean and variance by completing the square in the exponent.

Sol: Supposed we are looking for
$u\left(X_{t_{2}} \mid X_{t_{1}}=x_{1}\right.$ and $\left.X_{t_{3}}=x_{3}\right) \sim \mathcal{N}\left(\frac{t_{3}-t_{2}}{t_{3}-t_{1}} x_{1}+\frac{t_{2}-t_{1}}{t_{3}-t_{1}} x_{3}, \frac{\left(t_{3}-t_{2}\right)\left(t_{2}-t_{1}\right)}{t_{3}-t_{1}}\right)$.
Since

$$
\begin{aligned}
\mathrm{E}\left[X_{t_{2}} \mid X_{t_{1}}=x_{1} \text { and } X_{t_{3}}=x_{3}\right] & =\mathrm{E}\left(X_{t_{2}}\right)+\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]\left[\begin{array}{ll}
t_{1} & t_{1} \\
t_{1} & t_{3}
\end{array}\right]^{-1}\left(\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]-\left[\begin{array}{l}
\mathrm{E}\left(x_{1}\right) \\
\mathrm{E}\left(x_{3}\right)
\end{array}\right]\right) \\
& =\frac{1}{t_{1}\left(t_{3}-t_{1}\right)}\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]\left[\begin{array}{cc}
t_{3} & -t_{1} \\
-t_{1} & t_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right] \\
& =\frac{1}{t_{1}\left(t_{3}-t_{1}\right)}\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]\left[\begin{array}{c}
t_{3} x_{1}-t_{1} x_{3} \\
-t_{1} x_{1}+t_{1} x_{3}
\end{array}\right] \\
& =\frac{t_{3}-t_{2}}{t_{3}-t_{1}} x_{1}+\frac{t_{2}-t_{1}}{t_{3}-t_{1}} x_{3} \\
& =\frac{s_{2}}{s_{1}+s_{2}} x_{1}+\frac{s_{1}}{s_{1}+s_{2}} x_{3}
\end{aligned}
$$

Also, the variance is

$$
\begin{aligned}
\left.\mathrm{V}\left[X_{t_{2}} \mid X_{t_{1}}=x_{1} \text { and } X_{t_{3}}=x_{3}\right)\right] & =t_{2}-\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]\left[\begin{array}{ll}
t_{1} & t_{1} \\
t_{1} & t_{3}
\end{array}\right]^{-1}\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]^{t} \\
& =t_{2}-\frac{t_{3} t_{1}^{2}-2 t_{1}^{2} t_{2}+t_{1} t_{2}^{2}}{t_{1}\left(t_{3}-t_{1}\right)} \\
& =\frac{t_{2} t_{3}-t_{2} t_{1}-t_{3} t_{1}+2 t_{1} t_{2}-t_{2}^{2}}{\left(t_{3}-t_{1}\right)} \\
& =\frac{\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)}{\left(t_{3}-t_{1}\right)} \\
& =\frac{s_{1} s_{2}}{s_{1}+s_{2}}
\end{aligned}
$$

Just do the below for fun,

$$
\begin{aligned}
\Sigma^{2}\left(X_{t_{1}}, X_{t_{2}}\right) & =\left[\begin{array}{ll}
\operatorname{Cov}\left(X_{t_{1}}, X_{t_{1}}\right) & \operatorname{Cov}\left(X_{t_{1}}, X_{t_{2}}\right) \\
\operatorname{Cov}\left(X_{t_{2}}, X_{t_{1}}\right) & \operatorname{Cov}\left(X_{t_{2}}, X_{t_{2}}\right)
\end{array}\right] \\
& =\left[\begin{array}{ll}
t_{1} & t_{1} \\
t_{1} & t_{2}
\end{array}\right]
\end{aligned}
$$

which has determinant $t_{1}\left(t_{2}-t_{1}\right)=t_{1} s_{1}$, and whose inverse is $\frac{1}{t_{1} s_{1}}\left[\begin{array}{cc}t_{2} & -t_{1} \\ -t_{1} & t_{1}\end{array}\right]$.

Therefore, the joint density is

$$
u\left(x_{1}, x_{2}, t_{1}, s_{1}\right)=\frac{1}{2 \pi \sqrt{t_{1} s_{1}}} \exp \left(-\frac{1}{2} \frac{t_{2} x_{1}^{2}-2 t_{1} x_{1} x_{2}+t_{1} x_{2}^{2}}{t_{1} s_{1}}\right)
$$

So the density

$$
\begin{aligned}
u\left(x_{2}, s_{1} \mid x_{1}\right) & =\frac{u\left(x_{1}, x_{2}\right)}{\int_{\mathbb{R}} u\left(x_{1}, x_{2}\right) d x_{2}} \\
& =\frac{\frac{1}{2 \pi \sqrt{t_{1} s_{1}}} \exp \left(-\frac{1}{2} \frac{t_{2} x_{1}^{2}-2 t_{1} x_{1} x_{2}+t_{1} x_{2}^{2}}{t_{1} s_{1}}\right)}{\frac{1}{2 \pi \sqrt{t_{1} s_{1}}} \exp \left(-\frac{1}{2} \frac{\left(t_{2}-t_{1}\right) x_{1}^{2}}{t_{1} s_{1}}\right) \int_{\mathbb{R}} \exp \left(-\frac{1}{2} \frac{\left(x_{2}-x_{1}\right)^{2}}{s_{1}}\right) d x_{2}} \\
& =\frac{\exp \left(-\frac{1}{2} \frac{\left(x_{1}-x_{2}\right)^{2}}{s_{1}}\right)}{\sqrt{2 \pi s_{1}}} \sim \mathcal{N}\left(x_{1}, s_{1}\right)
\end{aligned}
$$

Similarly,

$$
\Sigma^{2}\left(X_{t_{2}}, X_{t_{3}}\right)=\left[\begin{array}{cc}
t_{2} & t_{2} \\
t_{2} & t_{3}
\end{array}\right]
$$

which has determinant $t_{2}\left(t_{3}-t_{2}\right)=t_{2} s_{2}$, and whose inverse is $\frac{1}{t_{2} s_{2}}\left[\begin{array}{cc}t_{3} & -t_{2} \\ -t_{2} & t_{2}\end{array}\right]$. So the conditional density

$$
\begin{aligned}
u\left(x_{2}, s_{1} \mid x_{3}\right) & =\frac{u\left(x_{2}, x_{3}\right)}{\int_{\mathbb{R}} u\left(x_{2}, x_{3}\right) d x_{2}} \\
& =\frac{\frac{1}{2 \pi \sqrt{t_{2} s_{2}}} \exp \left(-\frac{1}{2} \frac{t_{3} x_{2}^{2}-2 t_{2} x_{2} x_{3}+t_{2} x_{3}^{2}}{t_{2} s_{2}}\right)}{\frac{1}{2 \pi \sqrt{t_{2} s_{2}}} \exp \left(-\frac{1}{2} \frac{\left(t_{3}-t_{2}\right) x_{3}^{2}}{t_{3} s_{2}}\right) \int_{\mathbb{R}} \exp \left(-\frac{1}{2} \frac{t_{3}\left(x_{2}-\frac{t_{2}}{\left.t_{3} x_{3}\right)^{2}}\right.}{t_{2} s_{2}}\right) d x_{2}} \\
& =\frac{\exp \left(-\frac{1}{2} \frac{\left(x_{2}-\frac{t_{2}}{\left.t_{3} x_{3}\right)^{2}}\right.}{t_{2} s_{2} / t_{3}}\right)}{\sqrt{2 \pi t_{2} s_{2} / t_{3}}} \sim \mathcal{N}\left(\frac{t_{2}}{t_{3}} x_{3}, \frac{t_{2}}{t_{3}} s_{2}\right) .
\end{aligned}
$$

(c) Show that the formula of part (b) is the same as the conditional density of $X_{t_{2}}$ given any number of additional values for times $t_{k}<t_{1}$ and/or $t_{k}>t_{3}$. For example, conditioning on $X_{t_{4}}=x_{4}$ with $t_{4}>t_{3}$ does not change the answer to (b) in the sense that x_{4} and t_{4} do not appear in the answer.

Sol: Consider $t_{k}<t_{1}$ first, without loss of generality, setting $t_{k}=t_{0}$

$$
\begin{aligned}
\mathrm{E}\left[X_{t_{2}} \mid x_{0}, x_{1}, x_{3}\right] & =\left[\begin{array}{lll}
t_{0} & t_{1} & t_{2}
\end{array}\right]\left[\begin{array}{ccc}
t_{0} & t_{0} & t_{0} \\
t_{0} & t_{1} & t_{1} \\
t_{0} & t_{1} & t_{3}
\end{array}\right]^{-1}\left(\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{3}
\end{array}\right]\right) \\
& =\frac{\left[\begin{array}{ll}
t_{0} & t_{1} \\
t_{0}\left(t_{1}-t_{0}\right)\left(t_{3}-t_{1}\right)
\end{array}\right]}{}\left[\begin{array}{ccc}
t_{1} t_{3}-t_{1}^{2} & t_{0} t_{1}-t_{0} t_{3} & 0 \\
t_{1} t_{0}-t_{0} t_{3} & t_{0} t_{3}-t_{0}^{2} & t_{0}^{2}-t_{0} t_{1} \\
0 & t_{0}^{2}-t_{0} t_{1} & t_{0} t_{1}-t_{0}^{2}
\end{array}\right]\left(\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{3}
\end{array}\right]\right) \\
& =\frac{\left(t_{2}-t_{1}\right) x_{3}+\left(t_{3}-t_{2}\right) x_{1}}{\left(t_{3}-t_{1}\right)} \\
& =\frac{t_{3}-t_{2}}{t_{3}-t_{1}} x_{1}+\frac{t_{2}-t_{1}}{t_{3}-t_{1}} x_{3} \\
& =\frac{s_{2}}{s_{1}+s_{2}} x_{1}+\frac{s_{1}}{s_{1}+s_{2}} x_{3}
\end{aligned}
$$

Also, the variance is

$$
\begin{aligned}
\left.\mathrm{V}\left[X_{t_{2}} \mid X_{t_{1}}=x_{1} \text { and } X_{t_{3}}=x_{3}\right)\right] & =t_{2}-\left[\begin{array}{lll}
t_{0} & t_{1} & t_{2}
\end{array}\right]\left[\begin{array}{lll}
t_{0} & t_{0} & t_{0} \\
t_{0} & t_{1} & t_{1} \\
t_{0} & t_{1} & t_{3}
\end{array}\right]^{-1}\left[\begin{array}{l}
t_{0} \\
t_{1} \\
t_{2}
\end{array}\right] \\
& =t_{2}-\frac{t_{3} t_{1}^{2}-2 t_{1}^{2} t_{2}+t_{1} t_{2}^{2}}{t_{1}\left(t_{3}-t_{1}\right)} \\
& =\frac{t_{2} t_{3}-t_{2} t_{1}-t_{3} t_{1}+2 t_{1} t_{2}-t_{2}^{2}}{\left(t_{3}-t_{1}\right)} \\
& =\frac{\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)}{\left(t_{3}-t_{1}\right)} \\
& =\frac{s_{1} s_{2}}{s_{1}+s_{2}}
\end{aligned}
$$

Similarly, one can obtain t_{4} not involved.
(d) Specialize to the case $s_{1}=s_{2}=\Delta t$. Compare the variance of $X_{t_{2}}$ with both $X_{t_{1}}$ and $X_{t_{3}}$ specified to the variance with only $X_{t_{1}}$ specified.
(e) (not an action item) You can use these formulas to generate Brownian motion paths in a different way. First generate $X_{1} \sim \mathcal{N}(0,1)$ and $X_{0}=0$. Then use the result of (d) to generate $X_{1 / 2} \sim \mathcal{N}(\cdot, \cdot)$ (results of (d)). Then use (d) again to generate $X_{1 / 4}$ using X_{0} and $X_{1 / 2}$, and $X_{3 / 4}$ from $X_{1 / 2}$ and X_{1}. Continuing in this way you can make a Brownian motion path in as much detail as you want.
4. (backward equation) Let X_{t} be a standard Brownian motion starting from $X_{0}=0$. Let

$$
\tau=\min \left\{t \text { so that }\left|X_{t}\right|=1\right\}
$$

Find the expected hitting time $\mathrm{E}[\tau]$. Hint:
(a) Suppose $V(x, t)$ is a running time reward function and the total reward starting from x at time t is

$$
\int_{t}^{\tau} V\left(X_{s}, s\right) d s
$$

There the process starts with $X_{t}=s$, and τ is the first hitting time after t, and $|x| \leq 1$. Define the value function for this to be

$$
f(x, t)=\mathrm{E}_{x, t}\left[\int_{t}^{\tau} V\left(X_{s}, s\right) d s\right] .
$$

Figure out the PDE that f satisfies.
Sol: We write $X_{t+\Delta t}=X_{t}+\triangle x$ and expand $f\left(X_{t+\Delta t}, t+\triangle t\right)$ in a taylor series.

$$
\begin{aligned}
f\left(X_{t+\Delta t}, t+\triangle t\right) & =f\left(X_{t}, t\right) \\
& +\partial_{x} f\left(X_{t}, t\right) \triangle X \\
& +\partial_{t} f\left(X_{t}, t\right) \triangle t \\
& +\frac{1}{2} \partial_{x}^{2} f\left(X_{t}, t\right) \triangle X^{2} \\
& +\mathcal{O}\left(|\triangle x|^{3}\right)+\mathcal{O}(|\triangle X||\triangle t|)+\mathcal{O}\left(\triangle t^{2}\right)
\end{aligned}
$$

The three remainder terms on the last line are the sizes of the three lowest order Taylor series terms left out. Considerting the tower property, whcih says that the algebra $\mathcal{F}_{t+\Delta t}$ has a little more information than \mathcal{F}_{t}. Therefore, if Y is any random variable, we must have

$$
\mathrm{E}\left[\mathrm{E}\left[Y \mid \mathcal{F}_{t+\Delta t}\right] \mid \mathcal{F}_{t}\right]=\mathrm{E}\left[Y \mid \mathcal{F}_{t}\right]
$$

Thus,

$$
\begin{aligned}
f(x, t) & =\mathrm{E}_{x, t}\left[\int_{t}^{\tau} V\left(X_{s}, s\right) d s\right] \\
& =\mathrm{E}\left[\int_{t}^{\tau} V\left(X_{s}, s\right) d s \mid \mathcal{F}_{t}\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\int_{t}^{\tau} V\left(X_{s}, s\right) d s \mid \mathcal{F}_{t+\Delta t}\right] \mid \mathcal{F}_{t}\right] \\
& =\mathrm{E}\left[f\left(X_{t+\Delta t}, t+\Delta t\right) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

Now take the expectation of both sides conditioning on \mathcal{F}_{t} and pull
out of the expectation anything that is known in \mathcal{F}_{t} :

$$
\begin{aligned}
& \mathrm{E}\left[f\left(X_{t+\Delta t}, t+\Delta t\right) \mid \mathcal{F}_{t}\right]=f(x, t) \\
&+\partial_{x} f(x, t) \mathrm{E}\left[\triangle X \mid \mathcal{F}_{t}\right] \\
&+\partial_{t} f(x, t) \Delta t \\
&+\frac{1}{2} \partial_{x}^{2} f(x, t) \mathrm{E}\left[\triangle X^{2} \mid \mathcal{F}_{t}\right] \\
&+\mathcal{O}\left(\mathrm{E}\left[|\triangle X|^{3} \mid \mathcal{F}_{t}\right]\right)+\mathcal{O}\left(\mathrm{E}\left[|\triangle X|^{3} \mid \mathcal{F}_{t}\right] \Delta t\right)+\mathcal{O}\left(\Delta t^{2}\right) \\
& f(x, t)=\mathrm{E}\left[\int_{t}^{t+\Delta t} V\left(X_{s}, s\right) d s+\int_{t+\Delta t}^{\tau} V\left(X_{s}, s\right) d s \mid \mathcal{F}_{t}\right] \\
&= V(x, t) \Delta t+\mathrm{E}\left[f\left(X_{t+\Delta t}, t+\Delta t\right) \mid \mathcal{F}_{t}\right] \\
&= f(x, t)+\left(V(x, t)+\partial_{t} f(x, t)+\frac{1}{2} \partial_{x}^{2} f(x, t)\right) \Delta t+\mathcal{O}\left(\Delta t^{\frac{1}{2}}\right)
\end{aligned}
$$

Taking $\Delta t \rightarrow 0$ shows that f satisfies the backward equation. The
Dirichlet boundary condition is $f(1, t)=0$ and $f(-1, t)=0$.
(b) The case $V(x, t)=1$ gives the expected hitting time.

Sol: Considering the partial differential equation

$$
\left\{\begin{array}{l}
1+f_{t}+\frac{1}{2} f_{x x}=0 \quad-1<x<1 \\
f(1, t)=f(-1, t)=0
\end{array}\right.
$$

Supposed that $f(x, t)=X(x) T(t)$, then

$$
\frac{T^{\prime}}{T}=-\frac{1}{2} \frac{X^{\prime \prime}}{X}=\lambda<0
$$

So $T(t)=e^{\lambda t}$, and

$$
\begin{aligned}
X(x) & =A \cos (\sqrt{2 \lambda} x)+B \sin (\sqrt{2 \lambda} x) \\
X(-1) & =0=X(1)
\end{aligned}
$$

Solving this we get $A=0=B$. Thus,

$$
\begin{aligned}
f(x, t) & =e^{\lambda t} \cdot 0-x^{2}+1 \\
& =1-x^{2}
\end{aligned}
$$

Setting $V(x, t)=1$ we have

$$
\begin{aligned}
\mathrm{E}_{x, t}[\tau-t] & =f(x, t) \\
& =1-x^{2}
\end{aligned}
$$

Therefore,

$$
\mathrm{E}_{x, t}[\tau]=1-x^{2}+t
$$

Differentiation of $\mathrm{E}\left[e^{-\alpha \tau}\right]=e^{-\sqrt{2 \alpha}}$ with respect to α results in

$$
\begin{aligned}
\mathrm{E}[\tau] & =-\left.\partial_{\alpha} \mathrm{E}\left[e^{-\alpha \tau}\right]\right|_{\alpha=0} \\
& =-\left.\partial_{\alpha}\left(e^{-\sqrt{2 \alpha}}\right)\right|_{\alpha=0} \\
& =\left.\frac{1}{2 e^{\sqrt{2 \alpha}} \sqrt{2 \alpha}}\right|_{\alpha=0} \\
& =\left.\partial_{\alpha}\left(-1+\sqrt{2 \alpha}-\frac{1}{2} 2 \alpha+\mathcal{O}\left(\alpha^{\frac{3}{2}}\right)\right)\right|_{\alpha=0} \\
& =\infty
\end{aligned}
$$

for all $\alpha>0$.
(c) There is a subtlety here that we need to show $\mathrm{E}[\tau]<\infty$. The assignment for a future week will show that there is a $x>0$ so that $\mathrm{P}_{x, 0}(\tau>t) \leq e^{-c t}$.

Sol:
5. (Computing) New this week: Download the file coding.pdf. It contains guidelines for coding. Ultimately they will save you time in the computing assignments. The material for this week contains the PDF

$$
M_{t}=\max _{0 \leq s \leq t} X_{s}
$$

and a formula for

$$
S_{t, a}(x) d x=\mathrm{P}\left(x \leq X_{t} \leq x+d x \mid X_{s}<a \text { for } 0 \leq s \leq t\right)
$$

You made histograms of these distributions last week. This week, put the exact formulas on the graphs to see whether they agree. Play with parameters to see how good a fit you can get in a reasonable amount of computer time.

