
Stochastic Calculus, Courant Institute, Fall 2012
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2012/index.html
Always check the class message board on the blackboard site from home.nyu.edu before doing any
work on the assignment.

Assignment 4, due October 7

Corrections: (none yet)

1. (Brownian motion with reflection) A reflecting Brownian motion, with a
reflecting barrier at x = a, is a stochastic process that never crosses a and
does not stick to a. For Xt 6= a, Xt acts like a Brownian motion. Suppose
X0 = 0 and a > 0. A reflecting Brownian motion has a probability density,
Xt ∼ u(x, t), that satisfies the heat equation if x < a, and has

ˆ a

−∞
u(x, t) dx = 1 . (1)

(a) The conservation formula (1) implies a boundary condition that u
satisfies at x = a. What is this condition? Hint: What must the
probability flux be at x = a? This boundary condition is called a
reflecting boundary condition. For wikipedia lovers, it is also called
a Neumann boundary condition.

Sol: Differentiating u(x, t) with respect to time t and using the heat
equation,

d

dt

ˆ a

−∞
u(x, t)dx =

ˆ a

−∞
ut(x, t)dx

=
1

2

ˆ a

−∞
uxx(x, t)dx

=
1

2
(ux(a, t)− ux(−∞, t))

= 0.

Since the heat kernel goes to 0 as x → −∞, we have found the
Neumann boundary condition

ux(a, t) = 0.

(b) Show that if v(x) is symmetric about the point a, which is the con-
dition v(a− x) = v(a+ x) for all x, and if v is a smooth function of
x, then v satisfies the boundary condition from part a.

Sol: If v(x) is symmetric about a, then v(a− x) = v(a+ x) and thus

∂xv(a− x) = v′(a− x) · (−1) = v′(a+ x) · 1 = ∂xv(a+ x).
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Substituting x = 0 into above equation, −v′(a) = v′(a), which im-
plies

vx(a) = 0.

(c) Use the method of images from this week’s material to write a formula
for the u(x, t) that satisfies the correct initial condition for X0 = 0
and boundary condition at a > 0. It is closely related to the formula
from class.

Sol: We want a function u(x, t) that is defined for x < a that satisfies
the initial condition u(x, t) → δ(x) as t → 0, for (x < a) and the
reflexing boundary condition ux(a, t) = 0. Since from (b) we know
if v(x) symmetric about a, then v satisfies this boundary condition.
We extend the definition of u by symmetric,

u(a+ x, t) = u(a− x, t),

or saying x′ = 2a− x and we have

u(x′, t) = u(x, t).

The resulting initial data becomes

u(x, 0) = δ(x) + δ(2a− x).

The initial data has changed, but the part for x < a is the same.
The solution is the superposition of the pieces from the two delta
functions:

u(x, t) =
1√
2πt

(
e−x

2/2t + e−(2a−x)2/2t
)
.

Notice that from notes
ˆ ∞
a

1√
2πt

e−x
2/2tdx =

ˆ a

−∞

1√
2πt

e−(x−2a)2/2tdx,

therefore
ˆ a

−∞
u(x, t)dx =

1√
2πt

ˆ a

−∞

(
e−x

2/2t + e−(2a−x)2/2t
)
dx

=
1√
2πt

ˆ a

−∞
e−x

2/2tdx+
1√
2πt

ˆ a

−∞
e−(x−2a)2/2tdx

=

ˆ a

−∞

1√
2πt

e−x
2/2tdx+

ˆ ∞
a

1√
2πt

e−x
2/2tdx

= 1.
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Also the Neumann boundary condition,

ux(a, t) =
1√
2πt

(
−2x

2t
e−x

2/2t +
2(2a− x)

2t
e−(2a−x)2/2t

)∣∣∣∣
x=a

=
1√
2πt

(
−a
t
e−a

2/2t +
a

t
e−a

2/2t
)

= 0

(d) Write a formula for mt = E[Xt] for reflecting Brownian motion.
The cumulative normal distribution is N(z) = P(Z ≤ z), when Z ∼
N (0, 1). Derive a formula for mt in terms of this and other explicit
functions. Verify that mt is exponentially small for small t. Verify
that mt →∞ as t→∞ and scales as t1/2.

Sol: Consider the change of variables, z1 = x/
√
t and z2 = (x −

2a)/
√
t, then

E [Xt] =
1√
2πt

ˆ a

−∞
xe−x

2/2t + xe−(2a−x)2/2tdx

=

√
t√

2π

ˆ a√
t

−∞
z1e
−z21/2dz1 +

1√
2π

ˆ − a√
t

−∞

(√
tz2 + 2a

)
e−z

2
2/2dz2

=

√
t√

2π

(
−e−

z21
2

∣∣∣∣z1= a√
t

z1=−∞

)
+

√
t√

2π

(
−e−

z22
2

∣∣∣∣z2=− a√
t

z2=−∞

)
+

2a√
2π
N(− a√

t
)

=

√
2

π

[
aN(− a√

t
)−
√
te−

a2

2t

]
.

Notice that as t→∞,

mt →
√

2

π

[
aN(0)−

√
t

(
1− a2

2t
+O(t−2)

)]
→ −∞.

(e) It is argued (possibly later in this course, or the book Stochastic In-
tegrals by Henry McKean) that a reflecting Brownian motion is kept
inside the allowed region {x ≤ a} by a rightward force at the reflect-
ing boundary. This force is different from zero only when Xt = a.
The force is just strong enough to prevent Xt > a. This picture sug-
gests that the total force is proportional to the total time spent at the
boundary. Since only the boundary force has a preferred direction,
if X0 = 0, it may be that

E[Xt] = E
[ˆ t

0

Fsds

]
,

both sides being negative. Since the force only acts when Xt = a, it
may be plausible that E[Fs] = C u(a, s). Verify that this picture is
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true, at least as far as the formula

mt = −C
ˆ t

0

u(a, s) ds .

Find C > 0.

Sol: Supposed that

mt = −C
ˆ t

0

1√
2πs

(
e−a

2/2s + e−a
2/2s

)
ds

=

√
2

π

[
aN(− a√

t
)−
√
te−

a2

2t

]
.

Then differentiate above with respect to t,

d

dt
mt = −C 1√

2πt

(
e−a

2/2t + e−a
2/2t
)

= −Ct− 1
2

√
2

π
e−a

2/2t,

which equals to

d

dt

√
2

π

[
aN(− a√

t
)−
√
te−

a2

2t

]
=

√
2

π

[
a
d

dt
N(− a√

t
)− d

dt

√
te−

a2

2t

]
=

√
2

π

[
ae−

a2

2t
d

dt
(− a√

t
)−

(
d

dt

√
t

)
e−

a2

2t −
√
t

(
d

dt
e−

a2

2t

)]
=

√
2

π

[
ae−

a2

2t (
1

2
at−

3
2 )−

(
1

2
t−

1
2

)
e−

a2

2t − t 1
2

(
t−2 a

2

2
e−

a2

2t

)]
= −1

2
t−

1
2

√
2

π
e−

a2

2t .

So C = 1
2 if I did nothing wrong.

2. ( Kolomogorov reflection principle) Let Xn be a discrete time symmetric
random walk on the integers, positive and negative. The random walk is
symmetric if P(x→ x+ 1) = P(x→ x− 1). Suppose the walk starts with
X0 = 0. Let Ha(t) = P(Xn = a for some n ≤ t) be the hitting probability
for this discrete process. Show that if a > 0, then

P(Ha(t)) = P(Xt = a) + 2P(Xt > a) . (2)

Hint: The discrete time version of the argument from class is rigorous.

Sol: For one dimensional symmetric random walk starting at X0 = 0, we
define the first hitting time

τa = min { t|Xt = a} .

4



We consider the reflecting random walk

Yt =

{
Xt if t ≤ τa
2a−Xt if t > τa

Now consider the event τa < t. On this event, Yt and Xt are on opposite
sides of a, unless they are both at a, and they correspond under reflection.
Moreover, both processes are simple random walks, so for any k ≥ 0,

P (Yt = a+ k) = P (Xt = a+ k) .

Note the event Xt = a+ t is impossible unless τa < t. So

P (Yt = a+ k) = P (Xt = a+ k and τa<t)
= P (Yt = a+ k and τa<t)
= P (Xt = a− k and τa<t) .

Therefore,

P (τa < t) =

∞∑
k=−∞

P (Xt = a+ k and τa<t)

=

−1∑
k=−∞

P (Xt = a+ k and τa<t) + P (Xt = a and τa<t)

+

∞∑
k=1

P (Xt = a+ k and τa<t)

= P (Xt = a) + P (Xt > a) + P (Xt < a) .

= P (Xt = a) + 2P (Xt > a) .

3. (Brownian bridge construction of Brownian motion) Suppose Xt is a stan-
dard Brownian motion. Suppose 0 ≤ t1 < t2 < t3.

(a) Write the two dimensional PDF of (Xt2 , Xt3) conditional on Xt1 .
Call it u(x2, x3, s2, s3|x1), where xj refers to the value of Xtj and
s1 = t2− t1 and s2 = t3− t2. These are the time increments between
t1 and t2, and t2 and t3, respectively.

Sol: Recall that if Y = (Y1, Y2)t be a two dimensional Gaussian
vector with covariance matrix Σ2. Then the joint density of Y is
given by

fY(y) =
1

2π det Σ
e−y

t(Σ)−1y/2.
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Let X = [Xt1 , Xt2 , Xt3 ] with 0 ≤ t1 < t2 < t3. The covariance
matrix,

σ2 =

 Cov (Xt1 , Xt1) Cov (Xt1 , Xt2) Cov (Xt1 , Xt3)
Cov (Xt2 , Xt1) Cov (Xt2 , Xt2) Cov (Xt2 , Xt3)
Cov (Xt3 , Xt1) Cov (Xt3 , Xt2) Cov (Xt3 , Xt3)


=

 t1 t1 t1
t1 t2 t2
t1 t2 t3

 .
The determinant is t1(t2 − t1)(t3 − t2) = t1s1s2. The inverse is hor-
rible. Clearly, this is not the ideal way to proceed. Let’s see if we
can do otherwise. The two dimensional density of (Xt2 , Xt3) con-
ditional on Xt1 can be determined from the fact the distribution of
Y1 ∼ N (µ1,Σ1) conditional on Y2N (µ2,Σ2) is multivariate nor-
mal (Y1|Y2 = y2) ∼ N (µ,Σ) where

µ = µ1 + Σ12Σ−1
22 (y2 − µ2)

Σ = Σ11 −Σ12Σ−1
22 Σ21

Therefore, the covariance matrix

E [Xt2 , Xt3 |Xt1 = x1] =

[
EXt2

EXt3

]
+

[
Cov (Xt2 , Xt1)
Cov (Xt3 , Xt1)

]
1

EX2
t1

(x1 − EXt1)

=

[
EXt2

EXt3

]
+

[
t1
t1

]
1

t1
(x1 − EXt1)

=

[
x1

x1

]
.

Also, the variance is

V [Xt2 , Xt3 |Xt1 = x1] =

[
Cov (Xt2 , Xt2) Cov (Xt2 , Xt3)
Cov (Xt3 , Xt2) Cov (Xt3 , Xt3)

]
−
[

Cov (Xt2 , Xt1)
Cov (Xt3 , Xt1)

]
1

EX2
t1

[
Cov (Xt1 , Xt2)
Cov (Xt1 , Xt3)

]t
=

[
t2 t2
t2 t3

]
−
[
t1
t1

]
1

t1

[
t1 t1

]
=

[
t2 − t1 t2 − t1
t2 − t1 t3 − t1

]
=

[
s1 s1

s1 s1 + s2

]
The determinant of V is s1s2 and with inverse 1

s1s2

[
s1 + s2 −s1

−s1 s1

]
.

u(x2, x3, s2, s3|x1) =
1

2πs1s2
exp

(
− (s1 + s2)x2

2 − 2s1x2x3 + s1x
2
3

2s1s2

)
.
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(b) Conditional on Xt1 = x1 and Xt3 = x3, find the distribution of Xt2 .
This is N (µ, σ2) for some µ and σ2 that depend on x1, x3, s1, and
s2. Hint: The conditional density of Xt2 is the exponential of a
quadratic. Identify the mean and variance by completing the square
in the exponent.

Sol: Supposed we are looking for

u(Xt2 |Xt1 = x1 and Xt3 = x3) ∼ N
(
t3 − t2
t3 − t1

x1 +
t2 − t1
t3 − t1

x3,
(t3 − t2)(t2 − t1)

t3 − t1

)
.

Since

E [Xt2 |Xt1 = x1 and Xt3 = x3] = E(Xt2) +
[
t1 t2

] [ t1 t1
t1 t3

]−1([
x1

x3

]
−
[

E(x1)
E(x3)

])
=

1

t1(t3 − t1)

[
t1 t2

] [ t3 −t1
−t1 t1

] [
x1

x3

]
=

1

t1(t3 − t1)

[
t1 t2

] [ t3x1 − t1x3

−t1x1 + t1x3

]
=
t3 − t2
t3 − t1

x1 +
t2 − t1
t3 − t1

x3.

=
s2

s1 + s2
x1 +

s1

s1 + s2
x3.

Also, the variance is

V [Xt2 |Xt1 = x1 and Xt3 = x3)] = t2 −
[
t1 t2

] [ t1 t1
t1 t3

]−1 [
t1 t2

]t
= t2 −

t3t
2
1 − 2t21t2 + t1t

2
2

t1(t3 − t1)

=
t2t3 − t2t1 − t3t1 + 2t1t2 − t22

(t3 − t1)

=
(t2 − t1)(t3 − t2)

(t3 − t1)

=
s1s2

s1 + s2

Just do the below for fun,

Σ2(Xt1 , Xt2) =

[
Cov (Xt1 , Xt1) Cov (Xt1 , Xt2)
Cov (Xt2 , Xt1) Cov (Xt2 , Xt2)

]
=

[
t1 t1
t1 t2

]
,

which has determinant t1(t2−t1) = t1s1, and whose inverse is 1
t1s1

[
t2 −t1
−t1 t1

]
.
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Therefore, the joint density is

u(x1, x2, t1, s1) =
1

2π
√
t1s1

exp

(
−1

2

t2x
2
1 − 2t1x1x2 + t1x

2
2

t1s1

)
.

So the density

u(x2, s1|x1) =
u(x1, x2)´

R u(x1, x2)dx2

=

1
2π
√
t1s1

exp
(
− 1

2
t2x

2
1−2t1x1x2+t1x

2
2

t1s1

)
1

2π
√
t1s1

exp
(
− 1

2
(t2−t1)x2

1

t1s1

) ´
R exp

(
− 1

2
(x2−x1)2

s1

)
dx2

=
exp

(
− 1

2
(x1−x2)2

s1

)
√

2πs1
∼ N (x1, s1).

Similarly,

Σ2(Xt2 , Xt3) =

[
t2 t2
t2 t3

]
,

which has determinant t2(t3−t2) = t2s2, and whose inverse is 1
t2s2

[
t3 −t2
−t2 t2

]
.

So the conditional density

u(x2, s1|x3) =
u(x2, x3)´

R u(x2, x3)dx2

=

1
2π
√
t2s2

exp
(
− 1

2
t3x

2
2−2t2x2x3+t2x

2
3

t2s2

)
1

2π
√
t2s2

exp
(
− 1

2
(t3−t2)x2

3

t3s2

) ´
R exp

(
− 1

2

t3(x2− t2
t3
x3)2

t2s2

)
dx2

=

exp

(
− 1

2

(
x2− t2

t3
x3

)2

t2s2/t3

)
√

2πt2s2/t3
∼ N (

t2
t3
x3,

t2
t3
s2).

(c) Show that the formula of part (b) is the same as the conditional
density of Xt2 given any number of additional values for times tk < t1
and/or tk > t3. For example, conditioning on Xt4 = x4 with t4 > t3
does not change the answer to (b) in the sense that x4 and t4 do not
appear in the answer.
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Sol: Consider tk < t1 first, without loss of generality, setting tk = t0

E [Xt2 |x0, x1, x3] =
[
t0 t1 t2

]  t0 t0 t0
t0 t1 t1
t0 t1 t3

−1 x0

x1

x3


=

[
t0 t1 t2

]
t0(t1 − t0)(t3 − t1)

 t1t3 − t21 t0t1 − t0t3 0
t1t0 − t0t3 t0t3 − t20 t20 − t0t1

0 t20 − t0t1 t0t1 − t20

 x0

x1

x3


=

(t2 − t1)x3 + (t3 − t2)x1

(t3 − t1)

=
t3 − t2
t3 − t1

x1 +
t2 − t1
t3 − t1

x3.

=
s2

s1 + s2
x1 +

s1

s1 + s2
x3.

Also, the variance is

V [Xt2 |Xt1 = x1 and Xt3 = x3)] = t2 −
[
t0 t1 t2

]  t0 t0 t0
t0 t1 t1
t0 t1 t3

−1  t0
t1
t2


= t2 −

t3t
2
1 − 2t21t2 + t1t

2
2

t1(t3 − t1)

=
t2t3 − t2t1 − t3t1 + 2t1t2 − t22

(t3 − t1)

=
(t2 − t1)(t3 − t2)

(t3 − t1)

=
s1s2

s1 + s2

Similarly, one can obtain t4 not involved.

(d) Specialize to the case s1 = s2 = ∆t. Compare the variance of Xt2

with both Xt1 and Xt3 specified to the variance with only Xt1 spec-
ified.

(e) (not an action item) You can use these formulas to generate Brownian
motion paths in a different way. First generate X1 ∼ N (0, 1) and
X0 = 0. Then use the result of (d) to generate X1/2 ∼ N (·, ·)
(results of (d)). Then use (d) again to generate X1/4 using X0 and
X1/2, and X3/4 from X1/2 and X1. Continuing in this way you can
make a Brownian motion path in as much detail as you want.

4. (backward equation) Let Xt be a standard Brownian motion starting from
X0 = 0. Let

τ = min {t so that |Xt| = 1} .

Find the expected hitting time E[ τ ]. Hint:
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(a) Suppose V (x, t) is a running time reward function and the total re-
ward starting from x at time t is

ˆ τ

t

V (Xs, s) ds .

There the process starts with Xt = s, and τ is the first hitting time
after t, and |x| ≤ 1. Define the value function for this to be

f(x, t) = Ex,t
[ˆ τ

t

V (Xs, s) ds

]
.

Figure out the PDE that f satisfies.

Sol: We write Xt+4t = Xt +4x and expand f(Xt+4t, t+4t) in a
taylor series.

f(Xt+4t, t+4t) = f(Xt, t)

+ ∂xf(Xt, t)4X
+ ∂tf(Xt, t)4t

+
1

2
∂2
xf(Xt, t)4X2

+O(|4x|3) +O(|4X| |4t|) +O(4t2).

The three remainder terms on the last line are the sizes of the three
lowest order Taylor series terms left out. Considerting the tower
property, whcih says that the algebra Ft+4t has a little more infor-
mation than Ft. Therefore, if Y is any random variable, we must
have

E [E [Y | Ft+4t]| Ft] = E [Y | Ft] .

Thus,

f(x, t) = Ex,t
[ˆ τ

t

V (Xs, s) ds

]
= E

[ˆ τ

t

V (Xs, s) ds

∣∣∣∣Ft]
= E

[
E
[ˆ τ

t

V (Xs, s) ds

∣∣∣∣Ft+4t]∣∣∣∣Ft]
= E [f(Xt+4t, t+4t)| Ft]

Now take the expectation of both sides conditioning on Ft and pull
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out of the expectation anything that is known in Ft:

E [f(Xt+4t, t+4t)| Ft] = f(x, t)

+ ∂xf(x, t)E [4X| Ft]
+ ∂tf(x, t)4t

+
1

2
∂2
xf(x, t)E

[
4X2

∣∣Ft]
+O(E

[
|4X|3

∣∣∣Ft]) +O(E
[
|4X|3

∣∣∣Ft]4t) +O(4t2)

f(x, t) = E

[ˆ t+4t

t

V (Xs, s)ds+

ˆ τ

t+4t
V (Xs, s) ds

∣∣∣∣∣Ft
]

= V (x, t)4t+ E [f(Xt+4t, t+4t)| Ft]

= f(x, t) +

(
V (x, t) + ∂tf(x, t) +

1

2
∂2
xf(x, t)

)
4t+O

(
4t 1

2

)
Taking 4t → 0 shows that f satisfies the backward equation. The
Dirichlet boundary condition is f(1, t) = 0 and f(−1, t) = 0.

(b) The case V (x, t) = 1 gives the expected hitting time.

Sol: Considering the partial differential equation{
1 + ft + 1

2fxx = 0 −1 < x < 1

f(1, t) = f(−1, t) = 0

Supposed that f(x, t) = X(x)T (t), then

T ′

T
= −1

2

X ′′

X
= λ < 0.

So T (t) = eλt, and

X(x) = A cos(
√

2λx) +B sin(
√

2λx),

X(−1) = 0 = X(1).

Solving this we get A = 0 = B. Thus,

f(x, t) = eλt · 0− x2 + 1

= 1− x2.

Setting V (x, t) = 1 we have

Ex,t [τ − t] = f(x, t)

= 1− x2
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Therefore,

Ex,t [τ ] = 1− x2 + t.

Differentiation of E [e−ατ ] = e−
√

2α with respect to α results in

E [τ ] = −∂αE
[
e−ατ

]∣∣
α=0

= −∂α
(
e−
√

2α
)∣∣∣
α=0

=
1

2e
√

2α
√

2α

∣∣∣∣
α=0

= ∂α

(
−1 +

√
2α− 1

2
2α+O(α

3
2 )

)∣∣∣∣
α=0

=∞

for all α > 0.

(c) There is a subtlety here that we need to show E[ τ ] < ∞. The
assignment for a future week will show that there is a x > 0 so that
Px,0(τ > t) ≤ e−ct.

Sol:

5. (Computing) New this week: Download the file coding.pdf . It contains
guidelines for coding. Ultimately they will save you time in the computing
assignments. The material for this week contains the PDF

Mt = max
0≤s≤t

Xs

and a formula for

St,a(x)dx = P(x ≤ Xt ≤ x+ dx | Xs < a for 0 ≤ s ≤ t)

You made histograms of these distributions last week. This week, put
the exact formulas on the graphs to see whether they agree. Play with
parameters to see how good a fit you can get in a reasonable amount of
computer time.
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