
Stochastic Calculus, Courant Institute, Fall 2012
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2012/index.html
Always check the class message board on the blackboard site from home.nyu.edu before doing any
work on the assignment.

Assignment 5, due October 29

Corrections: (none yet.)

1. (A generalization of the Ito isometry formula) Here is a handy to calculate
some things about Ito integrals

(a) Suppose ft and gt are non-anticipating functions, and the correspond-
ing Ito integrals are

Xt =

ˆ t

0

fsdWs

Yt =

ˆ t

0

gsdWs.

Show that

cov(Xt, Yt) = E[XtYt] =

ˆ t

0

E[ fsgs] ds .

Sol: Recall, a non-anticipating process (or adapted process) is one
that cannot see into the future. An informal interpretation is that
X is adapted if and only if, for every realization and every n, Xn is
known at time n. The concept of an adapted process is essential, for
instance, in the definition of the Ito integral, which only makes sense
if the integrand is an adapted process. Consider the white noise
representation of Brownian motion. White noise is a generalized
function (distribution). Brownian motion can be thought of as the

motion of a particle pushed by white noise, that it Wt =
´ t

0
ξ (s) ds.

Recall that ξ(t) has mean zero and

E [ξ (t1) ξ (t2)] = δ (t1 − t2) .
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Then dWt = ξ(t)dt

cov(Xt, Yt) = E

[ˆ t

0

fs1dWs1

ˆ t

0

gs2dWs2

]
=

ˆ t

0

ˆ t

0

E [fs1gs2ξ(s1)ξ(s2)] ds1ds2

=

ˆ t

0

ˆ t

0

E [fs1gs2 ] E [ξ(s1)ξ(s2)] ds1ds2

=

ˆ t

0

ˆ t

0

E [fs1gs2 ] δ(s1 − s2)ds1ds2

=

ˆ t

0

E [fsgs] ds

(b) Suppose ft = t2 and gt = 1. The notes for Week 5 show that Xt ∼
N (0, t5/5). Clearly Yt = Wt. Compute the covariance of Xt and
Wt using the result of part (a). This should agree with the result of
question (3) from Assignment 3.

Sol: To compute the covariance of Xt and Wt, E [fsgs] = E
[
s2
]

=

cov(Xt,Wt) =

ˆ t

0

E [fsgs] ds

=

ˆ t

0

s2ds

=
t3

3
.

(c) Since (Xt,Wt) is a bivariate normal whose variance/covariance struc-
ture you know, you can compute the conditional variance var(Xt|Wt).
Use this result to show that Xt is not a function of Wt. This is an
example of a general phenomenon, that the value of an Ito integral
depends on the whole path W[0,t], not just the endpoint Wt.

Sol: The correlation is just ρ = cov(Xt,Wt)
σXtσWt

= t3/3
(t5/5)1/2t1/2

=
√

5/3 a

constant. Thus,

var(Xt|Wt) = σ2
X

(
1− ρ2

)
=

4

9

t5

5
=

4

45
t5.

Note that Xt =
´ t

0
s2dWs depends on the whole path Ws for s ∈ [0, t],

not just the endpoint Wt.
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2. (Ornstein Uhlenbeck) This exercise goes through another approach to the
Ornstein Uhlenbeck process. This time the process is called Vt because it
represents the velocity of a small particle in a fluid at time t. This particle
is subject to a random force Ft and friction with coefficient γ. We assume
the units have been chosen so the mass of the particle is 1. The dynamics
are

dVt
dt

= −γVt + Ft . (1)

The term −γVt represents friction proportional to the velocity of the par-
ticle, but pushing in the direction the particle is not moving. We always
assume γ > 0.

(a) Write the solution that corresponds to F ≡ 0 and Vs = 1. Call this
G(s, t). This plays the role that is played by a Green’s function for
a PDE.

Sol: It’s obvious that the solution of (1) is given by

Vt = Ce−γt,

Substitute the boundary condition Vs = 1, we get Vs = 1 = Ce−γs,
in which we know C = eγs. Thus

Vt = e−γ(t−s) := G (s, t) .

(b) Suppose Ft is a bounded function of t or grown slowly with t as
t→ −∞. Suppose that Vt likewise grows slowly with t or is bounded.
Show that

Vt =

ˆ t

−∞
G(s, t)Fs ds . (2)

Hint: Differentiate with respect to t. There are two terms, which
correspond to the two terms on the right of (1).

Sol: Differentiate with respect to t on both side of equation (2),

dVt
dt

= −γ
ˆ t

−∞
G (s, t)Fs ds+G (t, t)Ft

= −γ
ˆ t

−∞
G (s, t)Fs ds+ Ft

= −γVt + Ft

from (1). Thus V (t) =
´ t
−∞G (s, t)Fs ds as desired.

(c) An impulsive force of size 1 has the form Ft = δ(t− t0). Describe the
solution (2) with an impulsive force, both for t < t0 and t > t0.
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Sol: For t < t0,

Vt =

ˆ t

−∞
G(s, t)δ(s− t0) ds = 0,

and for t > t0

Vt =

ˆ t

−∞
G(s, t)δ(s− t0) ds

= G(t0, t)

= e−γ(t−t0).

(d) Show that the formula (2) corresponds to a superposition of impulsive
forces at time s over the interval ds with size Fsds.

Sol: The impulsive forces at time s over the interval ds with size
Fsds is given by

Vt =

ˆ t

−∞
G(s, t)δ(ds)Fsds.

(e) Suppose we replace the impulsive force over the interval (s, s + ds)
with a mean zero Gaussian σdWs in (2). Find a formula for E[Vt] and
one for var(Vt). Hint: These are independent of t, why? If you are
uncomfortable with an infinite range of integration, you may replace
−∞ by a large negative t0 in (2), then let t0 → −∞.

Sol: Replacing the impulsive forces by σdWs, which gives us

Vt = lim
t0→−∞

ˆ t

t0

G(s, t)σdWs

= lim
t0→−∞

e−γ(t−t0)Vt0︸ ︷︷ ︸
neglegible

+

ˆ t

t0

G(s, t)σdWs


=

ˆ t

−∞
G(s, t)σdWs

Thus E [Vt] = 0. Another way to see this is by considering the method
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of integrating factor

d
(
eγtVt

)
= eγtσdWt

⇒ eγtVt − eγt0Vt0 =

ˆ t

−∞
eγsσdWs

⇒ Vt = e−γ(t−t0)Vt0 +

ˆ t

−∞
e−γ(t−s)σdWs

=

ˆ t

−∞
e−γ(t−s)σdWs.

Let us calculate the variance,

Var [Vt] = E
[
V 2
t

]
− (E [Vt])

2

= σ2e−2γt

ˆ t

−∞
e2γsds

= e−2γt σ
2

2γ

(
e2γt − 0

)
=
σ2

2γ
.

Notice that these are independent of t, since we integrating from −∞.
(f) Show that the Vt given by part (2e) is a Markov process. Hint: write

a formula for E[Vs | Ft] that depends only on Vt and W[t,s].

Sol: The Vt given by part (2e) is Vt =
´ t
−∞G(s, t)σdWs. So for s > t,

we must have

E
[ˆ s

t

G(s′, s)σdWs′

∣∣∣∣Ft] = 0

by the martingale property of Ito integrals. Therefore,

E [Vs| Ft] = E
[ˆ s

−∞
G(s′, s)σdWs′

∣∣∣∣Ft]
= E

[ˆ t

−∞
G(s′, s)σdWs′ +

ˆ s

t

G(s′, s)σdWs′

∣∣∣∣Ft]
= E

[ˆ t

−∞
G(s′, s)σdWs′

∣∣∣∣Ft]+ E
[

+

ˆ s

t

G(s′, s)σdWs′

∣∣∣∣Ft]
= E

[ˆ t

−∞
G(s′, s)σdWs′

∣∣∣∣Ft]
= e−γ(s−t)E

[ˆ t

−∞
e−γ(t−s′)σdWs′

∣∣∣∣Ft]
= G(t, s)E

[ˆ t

−∞
G(s′, t)σdWs′

∣∣∣∣Ft]
= G(t, s)E [Vt| Ft]
= G(t, s)Vt.
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which depends only on Vt at time t, but not depends on the path
that V followed to get here. Thus E [Vs| Ft] = E [Vs|Vt] , which is
the Markov property.

(g) Suppose ∆V = Vt+∆t − Vt. Find a formula for E[ ∆V | Ft], and

one for E
[

(∆V )
2 | Ft

]
. Show that this is the same as the Ornstein

Uhlenbeck process in that the formulas here agree with the formulas
from Week 3, Section 5 (possibly with 2γ for γ or 2σ for σ. Hint: for
the latter, it may be simpler to calculate var (∆V | Ft), because the
dependence on Vt is different.

Sol: Let us consider the process ∆V first,

∆V = Vt+∆t − Vt

=

ˆ t+∆t

−∞
e−γ(t+∆t−s)σdWs −

ˆ t

−∞
e−γ(t−s)σdWs

=

ˆ t+∆t

t

e−γ(t+∆t−s)σdWs +

ˆ t

−∞
e−γ(t+∆t−s)σdWs −

ˆ t

−∞
e−γ(t−s)σdWs

=

ˆ t+∆t

t

e−γ(t+∆t−s)σdWs + (e−γ∆t − 1)

ˆ t

−∞
e−γ(t−s)σdWs

=

ˆ t+∆t

t

e−γ(t+∆t−s)σdWs + (e−γ∆t − 1)Vt.

Thus the expected value is

E [∆V | Ft] = E

[ˆ t+∆t

t

e−γ(t+∆t−s)σdWs + (e−γ∆t − 1)Vt | Ft

]

= E

[ˆ t+∆t

t

e−γ(t+∆t−s)σdWs | Ft

]
+ (e−γ∆t − 1)Vt

= 0 + (e−γ∆t − 1)Vt

= −γVt∆t+O(∆t2),

by Taylor’s expansion ex−1 =
∑∞
n=1 x

n/n!. For the second moment,

E
[
(∆V )

2 | Ft
]

= E
[
V 2
t+∆t − 2VtVt+∆t + V 2

t | Ft
]

= E
[
V 2
t+∆t | Ft

]
− 2VtE [Vt+∆t | Ft] + V 2

t

= E
[
V 2
t+∆t | Ft

]
− 2e−γ∆tV 2

t + V 2
t .
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Let us consider the first term of the above integral,

E
[
V 2
t+∆t | Ft

]
= E

(ˆ t+∆t

−∞
e−γ(t+∆t−s)σdWs

)2

| Ft


= E

[(ˆ t

−∞
e−γ(t+∆t−s)σdWs

)2

| Ft

]

+ 2E
[(ˆ t

−∞
e−γ(t+∆t−s)σdWs

)
| Ft

]
E

[(ˆ t+∆t

t

e−γ(t+∆t−s)σdWs

)
| Ft

]

+ E

(ˆ t+∆t

t

e−γ(t+∆t−s)σdWs

)2

| Ft


= e−2γ∆tV 2

t + 2e−γ∆tVt · 0 +
σ2

2γ

(
1− e−2γ∆t

)
.

Combining above we get

E
[
(∆V )

2 | Ft
]

= e−2γ∆tV 2
t +

σ2

2γ

(
1− e−2γ∆t

)
− 2e−γ∆tV 2

t + V 2
t

= V 2
t (1 + e−2γ∆t − 2e−γ∆t) +

σ2

2γ

(
1− e−2γ∆t

)
= V 2

t (1 + 1 +−2γ∆t− 2 + 2γ∆t) +
σ2

2γ
(1− 1 + 2γ∆t) +O(∆t2)

= σ2∆t+O(∆t2).

3. In Einstein’s model of Brownian motion, the location of a particle is

Xt =

ˆ t

0

Vs ds . (3)

This exercise shows that this is true, provided we use an appropriate
scaling. The parameter γ from Exercise (2) controls how fast Vt loses
memory. Therefore, in this exercise we take the limit γ →∞ and identify
the limiting process Xt.

(a) Find a formula for Xt in the form

Xt =

ˆ t

0

L(s, t)dWs.

Hint: Combine the two formulas (2) (with Fsds = dWs) and (3),
reverse the order of integration.
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Sol: Substitute (2), then Vs′ =
´ s′
−∞G(s, s′)σdWs

Xt =

ˆ t

0

ˆ s′

−∞
G(s, s′)σdWsds

′

=

ˆ t

0

(ˆ 0

−∞
G(s, s′)σdWs +

ˆ s

0

G(s, s′)σdWs

)
ds′

=

ˆ t

0

ˆ 0

−∞
G(s, s′)σdWsds

′ +

ˆ t

0

ˆ s

0

G(s, s′)σdWsds
′

=

ˆ t

0

e−γs
′
V0ds

′ + σ

ˆ t

0

ˆ t

s

G(s, s′)ds′dWs

=

(
1− e−γt

γ

)
V0 +

ˆ t

0

σ

(
1− e−γ(t−s)

γ

)
dWs.

Since the first term goes to 0 as γ → ∞, we might drop it. So we
can write Xt as Xt =

´ t
0
L(s, t)dWs where

L(s, t) = σ

(
1− e−γ(t−s)

γ

)
.

(b) Find a formula for σ as γ →∞ so that E
[
X2

1

]
= 1. Call this process

Xγ,t Hint: the exact formula for finite γ may be hard to find, but
you can find the behavior of σ as γ →∞ as a power of γ to leading
order. This all you need.

Sol: Apply Ito isometry,

E
[
X2

1

]
= E

[ˆ 1

0

L2(s, 1)ds

]
= E

[
σ2

ˆ 1

0

(
1− e−γ(1−s)

γ

)2

ds

]

= E
[
σ2

ˆ 1

0

(
1− 2e−γ(1−s) + e−2γ(1−s)

γ2

)
ds

]
=
σ2

γ2
− 2σ2

γ3
(1− e−γ) +

σ2

2γ3
(1− e−2γ)

→ 1.

Therefore, σ = γ. Let us call the process

Xγ,t =

ˆ t

0

L(s, t)dWs

=

ˆ t

0

(
1− e−γ(t−s)

)
dWs.
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(c) Show that in the limit γ → ∞ from part (3b) the process Xγ,t has

Xγ,[0,T ]
D→ Xt as γ → ∞, where Xt is standard Brownian motion.

Take this to mean that the finite dimensional joint distributions of
(Xt1 , . . . , Xtn) are what they should be for Brownian motion. Hint:
Since Xγ,[0,T ] is Gaussian (being a linear function of W[0,T ]), you
just need to evaluate the limiting means and covariances. You can
do these from part (3b) and the independent increments property.
So you need to show that as γ → ∞, you approach independent
increments.

Sol: Intuitively, in the limit γ →∞ from part (3b) the process

dXγ,t =
(

1− e−γ(t−s)
)
dWs

∣∣∣T
0

→ dWt

has Xγ,[0,T ]
D→ Xt as γ → ∞, where Xt is standard Brownian mo-

tion. We show this fact by considering the finite dimensional joint
distributions of (Xt1 , . . . , Xtn) are what they should be for Brownian
motion. Following from the hint, since Xγ,[0,T ] is Gaussian, we first
evaluate the limiting mean, Xγ,t that has mean 0 and variance t.
Notice that if we write Xγ,t either to be

Xγ,t =
1− e−γt

γ
V0 +

ˆ t

0

1− e−γ(t−s)dWs

or

Xγ,t =

ˆ t

0

1− e−γ(t−s)dWs,

we both have E [Xγ,t] = 0 and var [Xγ,t] = t as γ →∞ and σ = γ.
To show that Xγ,t has independent increment as γ →∞, we consider
the non-overlapping intervals t1 < t2 < t3 < t4, then

Xγ,t2 −Xγ,t1 =

ˆ t2

0

1− e−γ(t2−s)dWs −
ˆ t1

0

1− e−γ(t1−s)dWs

=

ˆ t2

t1

1− e−γ(t2−s)dWs +

ˆ t1

0

1− e−γ(t2−s)dWs −
ˆ t1

0

1− e−γ(t1−s)dWs

=

ˆ t2

t1

1− e−γ(t2−s)dWs +

ˆ t1

0

e−γ(t1−s) − e−γ(t2−s)dWs

Xγ,t4 −Xγ,t3 =

ˆ t4

0

1− e−γ(t4−s)dWs −
ˆ t3

0

1− e−γ(t3−s)dWs

=

ˆ t4

t3

1− e−γ(t4−s)dWs +

ˆ t3

0

e−γ(t3−s) − e−γ(t4−s)dWs.
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So we are ready to examine the independent increment property,

E[(Xγ,t2 −Xγ,t1)(Xγ,t4 −Xγ,t3)]

= E[

(ˆ t2

t1

1− e−γ(t2−s)dWs

)(ˆ t3

0

e−γ(t3−s) − e−γ(t4−s)dWs

)
+

(ˆ t1

0

e−γ(t1−s) − e−γ(t2−s)dWs

)(ˆ t3

0

e−γ(t3−s) − e−γ(t4−s)dWs

)
]

= E[

ˆ t2

t1

ˆ t2

t1

(
1− e−γ(t2−s)

)(
e−γ(t3−s′) − e−γ(t4−s′)

)
dWsdWs′

+

ˆ t1

0

ˆ t1

0

(
e−γ(t1−s) − e−γ(t2−s)

)(
e−γ(t3−s′) − e−γ(t4−s′)

)
dWsdWs′ ]

=

ˆ t2

t1

(
1− e−γ(t2−s)

)(
e−γ(t3−s) − e−γ(t4−s)

)
ds

+

ˆ t1

0

(
e−γ(t1−s) − e−γ(t2−s)

)(
e−γ(t3−s) − e−γ(t4−s)

)
ds

→ 0

as γ →∞. Recall Lévy’s theorem: let Xt be a stochastic process with
continuous trajectories. Assume that it starts from zero, X0 = 0 and
also assume that Xt and X2

t − t are martingales with respect to
filtration (Ft)t≥0. Then Xt is a Brownian motion starting from zero.
Lévy’s theorem confirms that Xt is standard Brownian motion.

(d) (only for those who have taken Probability Limit Theorems II or oth-
erwise have the background to understand the question) Complete
part (3c) by showing that the Xγ,[0,T ] form a tight family. You can
do this by finding uniform estimates of the form

E
[

∆X4
γ

]
≤ C∆t2 ,

which imply that the paths Xγ are uniformly Hölder continuous.

Sol: Recall that Kolmogorov theorem states that a family of prob-
ability measures is tight if there exist α > 0, β > 0, B < ∞, and
C <∞ such that for all γ,

EXβ
0 ≤ B

and
E[∆Xβ

γ ] ≤ C∆t1+α.

It’s clear that for γ > 0 large enough,

1− e−γ(t+∆t−s) = γ(t+ ∆t− s) +O(∆t2)

e−γ(t−s) − e−γ(t+∆t−s) = 1− γ(t− s)− 1 + γ(t+ ∆t− s) +O(∆t2)

= γ∆t+O(∆t2)
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and therefore we shall have

E[∆X4
γ ] = E

(ˆ t+∆t

t

1− e−γ(t+∆t−s)dWs +

ˆ t

0

e−γ(t−s) − e−γ(t+∆t−s)dWs

)4

= E[

ˆ t+∆t

t

γ(t+ ∆t− s)dWs︸ ︷︷ ︸
:=I1

+

ˆ t

0

γ∆tdWs︸ ︷︷ ︸
:=I2

+O(∆t2)]4

= EI2
1EI2

1 + 6EI2
1EI2

2 + EI2
2EI2

2 .

Now let’s compute EI2
1 and EI2

2 :

EI2
1 = γ2

ˆ t+∆t

t

(t+ ∆t− s)2ds

= O(∆t)

EI2
2 = γ2t∆t = O(∆t).

Thus E[∆X4
γ ] = O(∆t2) or equivalent saying that E[∆X4

γ ] ≤ C∆t2.
Here the case is simply α = 1 and β = 4.

4. (Strong law of large numbers) Suppose Yk is a family of i.i.d. random
variables with E[Yk] = µ. The Kolmogorov strong law of large numbers
is the theorem that if E[ |Yk|] <∞, then

Y n =
1

n

n∑
k=1

Yk → µ as n→∞ a.s. (4)

This exercise does not suggest his brilliant proof using the three series
lemma or the more recent proof using the Birkoff ergodic theorem. Instead:
Give a proof of (4) using the hypothesis E

[
Y 4
k

]
< ∞. Hint: Suppose

µ = 0. The statement Y n → 0 is the same as the statement Y
4

n → 0. Set

Xn = Y
4

n and try to show that
∑

E[Xn] <∞ and use the Borel Cantelli
style lemma from the notes. What do you do if µ 6= 0?

Proof: First we suppose that µ = 0, let Sn =
∑n
k=1 Yk, then

E
[
|Sn|4

]
= nE

[
Y 4

1

]
+ 3n (n− 1)

(
EY 2

1

)
2

≤ nC + 3n2σ4.
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Therefore for any δ > 0,

P
[
Y n ≥ δ

]
= P

[∣∣∣∣Snn
∣∣∣∣ ≥ δ]

= P [|Sn| ≥ nδ]

≤
E
[
|Sn|4

]
n4δ4

≤ nC + 3n2σ4

n4δ4
,

which is summable. Now since

∞∑
n=1

P
[∣∣∣∣Snn

∣∣∣∣ ≥ δ] <∞,
we can apply the Borel-Cantelli lemma and hence Y n → 0 a.s..
If µ 6= 0, then consider

Zn = Yn − µ.

Then the inequality of arithmetic and geometric gives a+ b ≥ 2
√
ab

Z4
n = Y 4

n + 6Y 2
nµ+ µ4

E
[
Z4
n

]
≤ C + 6σ2µ+ µ4 <∞.

Thus the proof based on Borel-Cantelli lemma is still valided.

5. (Poisson process) A simple Poisson arrival process is a sequence of times
0 = T0 < T1 < T2 < · · · . The inter-arrival times Sk = Tk − Tk−1 are
independent exponential random variables. The intensity parameter, λ,
is the parameter in the exponential distribution Sk ∼ λe−λs, Sk > 0. The
counting function1is Nt = k if Tk < t and Tk+1 ≥ t. Either the counting
process or the arrival times are called the Poisson process. The counting
process jumps from k to k+1 at time Tk. Therefore, it is sometimes called
a jump process.

(a) Derive the probability density, fk(t), of Tk. Hint:

P(Tk ∈ (t, t+ dt)) =

ˆ t

t′=0

fk−1(t′) P(Tk ∈ (t, t+ dt) | Tk−1 = t′) dt′ .

1The inequality/equality choice makes the process Nt a cadlag process, more properly
càdlàg, a French abbreviation of “continue à droite, limite à gauche”, which translates to
“continuous on the right, limit on the left”. If you don’t know French, you can remember
droite, which is related to the English word “right” (both as in “rights” and as a direction),
and gauche is an English word related to being clumsy (or inappropriate), which is how it is
for many of us with our left hand.
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Write this in terms of the Sk density, figure out the integrals, starting
with f1(t) = λe−λt, then moving to f2(t), f3, etc., until you see the
pattern.

Sol: Note that for t > 0 and dt small enough, P (Tk ∈ (t, t+ dt))
means exactly k−1 arrives in [0, t), and exactly one point in [t, t+dt).
Let k = 1, then

P (T2 ∈ (t, t+ dt)) =

ˆ t

0

f1(t′)P (T2 ∈ (t, t+ dt) | T1 = t′) dt′

=

ˆ t

0

λe−λt
′
P (S2 ∈ (t− t′, t− t′ + dt)) dt′

=

ˆ t

0

λe−λt
′
λe−λ(t−t′) dt′

= λ2te−λt.

So f2(t) = λ2te−λt. Similarly,

f3(t) =

ˆ t

0

f2(t′)P (T3 ∈ (t, t+ dt) | T2 = t′) dt′

=

ˆ t

0

λ2t′e−λt
′
P (S3 ∈ (t− t′, t− t′ + dt)) dt′

= λ3e−λt
ˆ t

0

t′dt′

= λ3e−λt
t(3−1)

(3− 1)!
.

We may couclude that

fk(t) = λk
t(k−1)

(k − 1)!
e−λt.

(b) Derive a formula for pn(t) = P(Nt = n). This is the Poisson dis-
tribution. Check that your formula satisfies

∑∞
0 pn(t) = 1. This

involves the Taylor series formula for the exponential. Hint: p0(t) =
P(T1 > t), p1(t) = P(T1 < t < T2), etc. Look for the pattern. Prove
it by induction.

13



Sol: By induction,

p0(t) = P (T1 > t) =

ˆ ∞
t

λe−λsds = e−λt

p1(t) = P (T1 < t < T2)

= P (T2 > t)− P (T1 > t)

=

(
λ2

ˆ ∞
t

se−λsds

)
− e−λt

= −e−λt (−1− λt)− e−λt

= (λt) e−λt

So we may see the pattern, pn(t) = P (Tn+1 > t) − P (Tn > t) =
(λt)ne−λt

n! .

(c) Introduce a small time increment ∆t and a probability p∆t = λ∆t
(p∆t < 1 for ∆t small enough). Define tj = j∆t and independent
random variables Yj = 1 with probability p∆t and Yj = 0 otherwise.
Define

N∆t
t =

∑
tj<t

Yj .

Show that for each t,

N∆t
t
D→ Nt as ∆t→ 0 .

Hint: The distribution of N∆t
t is binomial. The limit ∆t→ 0 is easy

for p∆t
n (t).

Sol: Recall that the definition of exponential is given by

ex = lim
n→∞

(
1 +

x

n

)n
.

Also floor(x) = bxc = the largest integer not greater than x. Since

we have tj = j4t < t, we are summing up to
⌊
t
4t

⌋
. Notice that from

the definition of N4tt , we know it is the sum of
⌊
t
4t

⌋
independent

Bernoulli trials with probability p4t. We may write it as N4tt ∼
B
(⌊

t
4t

⌋
, p4t = λ4t

)
, in which the density is given by( ⌊
t
4t

⌋
k

)
(λ4t)k (1− λ4t)n−k.

Besides, one can easily find the characteristic function is(
1− λ4t+ λ4teit

)b t
4tc =

(
1 + λ4t

(
eit − 1

))b t
4tc

→ exp
(
λ
(
eit − 1

))
14



as 4t → 0. One recognize it’s the characteristic function of p4tn (t) .
According to Lévy’s continuity theorem: the sequence of random
variables {Xn} converges in distribution to X if and only if the se-
quence of corresponding characteristic functions converges pointwise
to the characteristic function of X.

(d) Assuming that N∆t
[0,T ]

D→ N[0,T ] as ∆t → 0, show that the Poisson
process has the independent increments property. Hint: this is a
statement about discrete probabilities that you can check by using
those probabilities, and figuring out what happens if t is not one of
the tj .

Sol: Let us consider the case t is one of the tj first, then the charac-
teristic functions of Nti −Ntj is

exp
(
λ
(
ei(ti−tj) − 1

))
(e) Show that Nt is a Markov process.

Sol: Recall that let (Ω,F ,P; (F)t≥0) be a stochastic basis and X =
(Xt)t≥0, Xt : Ω→ R, be a stochastic process. The process X is called
a Markov process provided that X is adapted and for all s, t ≥ 0 and
B ∈ B(R) one has that

P (Xs+t ∈ B| Fs) = P (Xs+t ∈ B|σ (Xs)) a.s.

i. Standard Brownian motion is Markov and a Martingale,

ii. Brownian motion with drift is Markov but not a Martingale

iii. The moving average of a Brownian Motion is a Martingale but
not Markov

iv. A Poisson Process is Markov but not a Martingale

(f) The compensated Poisson arrival process is Mt = Nt−λt. Show that
this is a martingale, which means that if s > t, then

E[Ms | Ft] = Mt .

Sol: Notice thta a Poisson process is not a martingale since E [Nt] =
λt, which is increasing. Consider a compensated Poisson arrival pro-
cess Mt, then

E [Ms −Mt| Ft] = E [Ns −Nt| Ft]− λ (s− t)
= E [Ns −Nt]− λ (s− t)
= E [Ns−t]− λ (s− t)
= 0.

15



(g) The standard Poisson process has intensity, or arrival rate, λ = 1.
Show that

E
[

∆M2 | Ft
]

= ∆t+ (smaller) as ∆t→ 0 .

As usual, ∆M = Mt+∆t −Mt. Compare these to comparable facts
about standard Brownian motion (martingale, E

[
∆W 2 | Ft

]
). Con-

clude that Brownian motion is not the unique process with these
properties.

Sol: Let ∆M = Mt+∆t −Mt, then

E
[
4M2

∣∣Ft] = E
[
M2
t+∆t − 2MtMt+∆t +M2

t

∣∣Ft]
= E

[
(Nt+∆t − λ(t+ ∆t))

2 − 2 (Nt − λt) (Nt+∆t − λ(t+ ∆t)) + (Nt − λt)2
∣∣∣Ft]

= E
[
(Nt+∆t −Nt)2

∣∣Ft]+ 2λtE [Nt+∆t −Nt| Ft]
− 2λ(t+ ∆t)E [ (Nt+∆t −Nt)| Ft] + λ2∆t2

= λ∆t+ 2λ2t∆t− 2λ2(t+ ∆t)4t+ λ2∆t2

= λ∆t− λ2∆t2

= λ∆t+O(∆t2).

Since we set λ = 1, this proved the claim.

(h) Calculate the scaling of E
[

∆W 4 | Ft
]

and E
[

∆M4 | Ft
]

with ∆t as
∆t→ 0.

Sol: First we notice that E
[
∆W 4

∣∣Ft]
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