
Stochastic Calculus, Courant Institute, Fall 2012
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2012/index.html
Always check the class message board on the blackboard site from home.nyu.edu before doing any
work on the assignment.

Assignment 7, due December 10

Corrections: (none yet.)

1. Suppose we want to evaluate A = E
[
e−X

2
T /2
]

where Xt is a standard

Brownian motion starting from X0 = 0. One approach is to simulate N
Brownian motion paths and use the estimator

Â =
1

N

N∑
k=1

e−X
2
k,T /2 . (1)

Another approach is to simulate the Ornstein Uhlenbeck process

dXt = −γXtdt+ dWt .

Then there is a change of measure formula L(X) so that

A = EOU

[
e−X

2
k,T /2L(X[0,T ])

]
. (2)

Another way to estimate A is to simulate N Ornstein Uhlenbeck paths
use

Â =
1

N

N∑
k=1

e−X
2
k,T /2L(Xk,[0,T ]) . (3)

TheP(τ ≥ t) X0/P(τ > t)second approach is more complicated, but it
could be a better estimator for large T .

(a) Write an analytic formula for A as a function of T .
Sol: Straightforward computation,

A = E
[
e−X

2
T /2
]

=
1√
2πT

ˆ
R

exp

[
−x

2

2
− x2

2T

]
dx

=
1√
T + 1

√
T + 1√
2πT

ˆ
R

exp

[
− (T + 1)x2

2T

]
dx

=
1√
T + 1

.

1



(b) Write a formula for the variance of the estimator (1).
Sol: The variance the estimator is given by

Var
[
Â
]

= E
[
Â2
]
−
(
E
[
Â
])2

= E

( 1

N

N∑
k=1

e−X
2
k,T /2

)2
−( 1

N

N∑
k=1

1√
T + 1

)2

= E

 1

N2

N∑
k=1

e−X
2
k,T +

2

N2

∑
k>j

e−(X2
k,T+X2

j,T )/2

− 1

T + 1

=
1

N2

N∑
k=1

E
[
e−X

2
k,T

]
+

2

N2

∑
k>j

E
[
e−X

2
k,T /2

]
E
[
e−X

2
j,T /2

]
− 1

T + 1

=
1

N

1√
2T + 1

+ �2

N2

N2 −N
�2 �

�
�1

T + 1
−
�
�
�1

T + 1

=
1

N
√

2T + 1
− 1

N(T + 1)

=

√
2T + 1(T + 1)− (2T + 1)

N(2T + 1)(T + 1)

(c) Use these to show that the relative accuracy of the Monte Carlo
estimator gets worse as T increases. Give an intuitive explanation
for this in terms of the distribution of XT and the range of values of
XT that contribute most to A. Make your explanation quantitative
(giving the right power of T ) if you can.

(d) Write a formula for L in (2) that gives the correct A. This is an
application of Girsanov’s formula.
Sol: Applying Girsanov’s formula

L
(
X[0,T ]

)
= exp

[
−γ
ˆ T

0

XtdXt −
1

2

ˆ T

0

γ2X2
t dt

]

= exp

[
−γ
ˆ T

0

XtdXt

]
exp

[
−γ

2

2

ˆ T

0

X2
t dt

]

(e) That formula involves

Yt =

ˆ t

0

XtdXt

when Xt is the Ornstein Uhlenbeck process. Find an explicit expres-
sion for Yt.
Sol: To find Yt, we shall compute the increment square first, notice
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that dX2
t = dt.

Yt =

ˆ t

0

XtdXt

= lim
∆t→0

n−1∑
k=1

Xtk

(
Xtk+1

−Xtk

)
= lim

∆t→0

1

2

n−1∑
k=1

(
X2
tk+1
−X2

tk

)
− 1

2

n−1∑
k=1

(
Xtk+1

−Xtk

)2
=

1

2
X2
T −

1

2
T

(f) Use your answer to part (e) to find an explicit formula for A in terms
of the OU process. This should agree with your answer to part (a).

Sol: First of all, we compute Now let us compute Yt =
´ t

0
X2
s

2 ds, then

dYt =
X2
t

2
dt

= 2Xt (−γXtdt+ dWt)

= −2γX2
t dt+ 2XtdWt.

Therefore,

X2
T = −2γ

ˆ T

0

Xtdt+ 2

ˆ T

0

XtdWt.

Similarly,

ˆ T

0

XtdWt = lim
∆t→0

n−1∑
k=1

Xtk

(
Wtk+1

−Wtk

)
= lim

∆t→0

n−1∑
k=1

−Xtk

(
Wtk+1

−Wtk

)
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EOU

[
e−X

2
k,T /2L(X[0,T ])

]
= EOU

[
e−X

2
k,T /2 exp

[
−γ
ˆ T

0

XtdXt

]
exp

[
−γ2

ˆ T

0

X2
t

2
dt

]]

=

√
γ

π

ˆ ∞
−∞

exp

[
−x

2

2
− γx2 − γ

(
1

2
x2 − 1

2
T

)
−?

]
dx

=

√
γ

π
e
γT
2

ˆ ∞
−∞

exp

[
−x

2

2
− γx2

T
− γ

2
x2−?

]
dx

=

√
γ

πT
e
γT
2

ˆ ∞
−∞

exp

[
− (T + 2γ + γT )

2T
x2 − (

γT

2
− 1

2
x2 +

γx2

2
)

]
dx

=

√
γ

πT

ˆ ∞
−∞

exp

[
−γTx

2 + 2γx2 + γTx2 − γT 2

2T

]
dx

=

√
γ

πT

ˆ ∞
−∞

exp

[
−2γ (T + 1)x2

2T

]
dx

=
1√
T + 1

���
���

���
���

���
���

�:1√
γ(T + 1)

πT

ˆ ∞
−∞

exp

[
−γ (T + 1)x2

T

]
dx

=
1√
T + 1

recall that the probability density function of the Ornstein–Uhlenbeck
process is given by

uOU(x, T ) =

√
γ

πT
exp

[
−γx

2

T

]
.

Since we know A can be written as

1√
T + 1

= EOU

[
e−X

2
k,T /2L(X[0,T ])

]
.

Therefore

L
(
X[0,T ]

)
=
vXT
uOU

=

√
1/2πT√
γ/πT

exp

[
− x

2

2T
+ γ

x2

T

]
=

1√
2γ

exp

[
− (1− γ)x2

2T

]
.

2. Suppose Xt is Brownian motion with X0 = 1. Let τ be the stopping time
that is the first time Xt = 0. On previous assignments we have studied
hitting probabilities.
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(a) Write a formula for the probability density for Xt conditional on
τ > t.
Sol: First of all, we can calculate the conditional probability, P (Xt ≤ y | τ > t) .
It’s clear that for y ≤ 0, this probability is equal to zero since this
process never hits the stopping position 0. Let y > 0, by definition
the process Xt

P (Xt ≤ x | τ > t) = P
(
Wt +X0 ≤ x | min

s≤t
Ws +X0 > 0

)
= P

(
Wt ≤ x−X0 | min

s≤t
Ws > −X0

)
= P

(
Wt ≤ x−X0 | max

s≤t
Ws < X0

)
=

P (Wt ≤ x−X0, maxs≤tWs < X0)

P (maxs≤tWs < X0)
.

Note that it’s obvious

P
(
Wt ≤ x−X0, max

s≤t
Ws < X0

)
= P (Wt ≤ x−X0)−P

(
Wt ≤ x−X0, max

s≤t
Ws ≥ X0

)
,

and we already knew that

P
(
Wt ≤ x−X0, max

s≤t
Ws ≥ X0

)
=

ˆ x−X0

−∞

ˆ ∞
X0

2(2u− v)√
2πt3

e−(2u−v)2/2tdudv.

To find the density, simply differentiate above with respect to x,

∂

∂x
P
(
Wt ≤ x−X0, max

s≤t
Ws ≥ X0

)
=

ˆ x−X0

−∞

ˆ ∞
X0

2(2u− v)√
2πt3

e−(2u−v)2/2tdudv

=

ˆ ∞
X0

2(2u− x+X0)√
2πt3

e−(2u−x+X0)2/2tdu

=

ˆ ∞
X0

∂

∂u

(
1√
2πt

e−(2u−x+X0)2/2t

)
du

=
1√
2πt

e−
(x+X0)2

2t .

The conditional density of Xt given that τ > t is

p (x| τ > t) =
∂

∂x
P (Xt ≤ x | τ > t)

=
1

P (τ > t)

(
∂

∂x
P (Wt ≤ x−X0)− ∂

∂x
P (Wt ≤ x−X0, τ ≤ t)

)
=

1

P (τ > t)

(
1√
2πt

exp

(
− (x−X0)2

2t

)
− 1√

2πt
exp

(
− (x+X0)2

2t

))
.
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(b) Show by explicit calculation that

E[Xt | τ > t] =
X0

P (τ > t)
.

Sol: It’s clear that

E [Xt | τ > t] =

ˆ ∞
0

xp (x| τ > t) dx

=
1

P (τ > t)

1√
2πt

ˆ ∞
0

x

(
e−

(x−X0)2

2t − e−
(x+X0)2

2t

)
dx

=
1

P (τ > t)

1√
2πt

(ˆ ∞
−X0

(y +X0)e−
y2

2t dy −
ˆ ∞
X0

(y −X0)e−
y2

2t dy

)

=
1

P (τ > t)


���

���
���

�:0
1√
2πt

ˆ X0

−X0

ye−
y2

2t dy +X0


=

X0

P (τ > t)
.

(c) Use the result of part (b) to show that the stopped process Xt∧τ
satisfies E[Xt∧τ ] = X0.
Sol:From part (b), we split the expectation to two parts as follows,

E [Xt∧τ ] = E [Xt∧τ | τ ≤ t]P (τ ≤ t) + E [Xt∧τ | τ > t]P (τ > t)

=
���

���
���:

0

E (Xτ = 0 | τ ≤ t)P (τ ≤ t) +
X0

P (τ > t)
P (τ > t)

= X0,

as claimed. We point out here first term of the second line vanishes
simply because Xτ is the particle position when hitting 0, that is
Xτ = 0, and as the expectation.

3. Consider the stochastic differential equation

dXt = −γXtdt+ σ
√
XtdWt . (4)

with X0 = 1.

(a) Give a qualitative derivation of (4) by thinking of a large number of
people waiting in a line. Let Nk be the number of people waiting in
line at step k. Suppose Nk is a large number. At time k, everyone
in the line tosses a coin, all independent, and leaves with probability
ε. Find a scaling of ε and t with N so that time dt corresponds to
k → k+ 1 and the scaled Nk converges in distribution to the process
(4). This just means finding a scaling factor r(ε) and s(ε) (both
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powers of ε) so that E[ dXt] and E
[
dX2

t

]
are both of order dt.

Sol: At time k,

Nk+1 = Nk − γNkdt+ σ
√
NkdtZk.

Let us compute the expected value of the Cox-Ingersoll-Ross process,
first write down the integral form,

Xt = X0 − γ
ˆ t

0

Xsds+ σ

ˆ t

0

√
XsdWs,

and then taking expectations and remind that the third term shall
vanish since Ito integral is zero,

E [Xt] = X0 − γ
ˆ t

0

E [Xs] ds.

Differentiation yields,

d

dt
E [Xt] = −γE [Xt] ,

which implies that

E [Xt] = e−γtX0.

Notice that

E [dXt] = −γE [Xt] dt = −γe−γtX0dt

E
[
dX2

t

]
=
σ2

2
E [Xt] dt =

σ2e−γt

2
X0dt.

Taylor expansion gives

E [dXt] = e−γ(t+dt)X0 − e−γtX0

= X0

((
1− γ(t+ dt) +

γ2(t+ dt)2

2!
+ ...

)
−
(

1− γt+
(γt)2

2!
+O

(
t3
)))

= X0

((
−γ + tγ2

)
dt+O

(
dt2
))
.

(b) Write a program in R to simulate the process (4) up to time t = 1.
Plot a histogram of the distribution of X1 (take γ = .5 and σ = 1).
Show that the histogram is incorrect if ∆t is too large, but seems to
have a limit as ∆t→ 0.
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