Sample questions for the final exam.

Instructions for the final:

- The final is Monday, December 16 from 7:10 to 9pm
- Explain all answers, possibly briefly. A correct answer with no explanation may receive no credit.
- You will get 20% credit for not answering a question. Points will be subtracted if you give a wrong answer.
- Cross off anything you think is wrong. You will have points subtracted for wrong answers even if the correct answer also appears.
- You may use one $8 \frac{1}{2} \times 11$ piece of paper, a cheat sheet with anything you want written on it.
- The actual exam will be shorter than this.

True/False. In each case, state whether the statement is true of false and give a few words or sentence of explanation.

1. If X_{t} is a stochastic process with $\mathrm{E}\left[\left(X_{t+\Delta t}-X_{t}\right)^{2} \mid \mathcal{F}_{t}\right]=a_{t} \Delta t+O\left(\Delta t^{2}\right)$ and $\mathrm{E}\left[\left(X_{t+\Delta t}-X_{t}\right)^{4} \mid \mathcal{F}_{t}\right]=o(\Delta t)$, then $\mathrm{E}\left[\left|X_{t+\Delta t}-X_{t}\right|^{3} \mid \mathcal{F}_{t}\right]=o(\Delta t)$.
2. If $d X_{t}=W_{t}^{2} d t$, then

$$
\lim _{\Delta t \rightarrow 0} \sum_{t_{k}<t}\left(X_{t_{k+1}}-X_{t_{k}}\right)^{2}=0 .
$$

This uses our usual notation: $\Delta t>0$ is the time step, $t_{k}=k \Delta t$ is a discrete time, $t>0$ is a fixed time as $\Delta t \rightarrow 0$.
3. If X_{t} is a diffusion process and a martingale, and if a_{t} is adapted, then

$$
Y_{t}=\int_{0}^{t} a_{s} d X_{s}
$$

is a martingale and a diffusion process.
4. Suppose P and Q are probability measures on a measure space Ω. If P is absolutely continuous with respect to Q, then Q is absolutely continuous with respect to P.
5. If X_{t}^{m} is a family of random variables with probability density $u^{m}(x, t)$, and $u^{m}(x, t) \rightarrow u(x, t)$ as $m \rightarrow \infty$, then $X_{t}^{m} \rightarrow X_{t}$ as $m \rightarrow \infty$ almost surely.

Multiple choice In each case only one of the possible answers is correct. Identify the correct answer and explain why.
6. Suppose P and Q are equivalent probability measures on a measure space Ω. Which of the following is true
(a) If $A \subseteq \Omega$ is an event, then $P(A)=0$ if and only if $Q(A)=0$.
(b) There is a function $f(x, t)$ so that $E\left[V\left(X_{T}\right) \mid \mathcal{F}_{t}\right]=f\left(X_{t}, t\right)$.
(c) $f\left(x, t_{1}\right)=E_{x, t_{1}}\left[f\left(X_{t_{2}}, t_{2}\right)\right]$, where $f(x, t)$ is the function so that $E\left[V\left(X_{T}\right) \mid \mathcal{F}_{t}\right]=f\left(X_{t}, t\right)$.
(d) $E\left[V\left(X_{T}\right) \mid \mathcal{F}_{t}\right]=E\left[V\left(X_{T}\right) \mid \mathcal{G}_{t}\right]$
7. Suppose

$$
\begin{aligned}
d X_{t} & =V_{t} d t \\
d V_{t} & =-k X_{t}-\gamma V_{t}+\sigma d W_{t}
\end{aligned}
$$

Which of the following is true?
(a) X_{t} is a one dimensional martingale.
(b) X_{t} is a one dimensional Markov process.
(c) $\left(X_{t}, V_{t}\right)$ is a two dimensional Markov process.
(d) $\mathrm{E}\left[\left(X_{t}-\bar{X}_{t}\right)^{4}\right]=4 \operatorname{var}\left(X_{t}\right)^{2}$. Here $\bar{X}_{t}=\mathrm{E}\left[X_{t}\right]$.
8. Suppose

$$
\begin{aligned}
d X_{t} & =X_{t} Y_{t} d t+d W_{1, t} \\
d Y_{t} & =\left(X_{t}+Y_{t}\right) d t+d W_{2, t}
\end{aligned}
$$

and $\left(X_{0}, Y_{0}\right)=(1,1)$. Here, $W_{1, t}$ and $W_{2, t}$ are independent standard Brownian motions. Which PDE below is satisfied by the value function

$$
f(x, y, t)=\mathrm{E}_{x, y, t}\left[\exp \left(-\int_{t}^{T} X_{t}^{2} d t\right)\right]
$$

(a) $\partial_{t} f+x y \partial_{x} f+(x+y) \partial_{y} f+\frac{1}{2} \triangle f-x^{2}=0$.
(b) $\partial_{t} f+x y \partial_{x} f+(x+y) \partial_{y} f+\frac{1}{2} \triangle f+x^{2} f=0$.
(c) $\partial_{t} f+\partial_{x}(x y f)+\partial_{y}((x+y) f)+\frac{1}{2} \triangle f-x^{2} f=0$.
(d) $\partial_{t} f+x y \partial_{x} f+(x+y) \partial_{y} f+\frac{1}{2} \triangle f-x^{2} f=0$.
9. Consider the integration-by-parts formula

$$
\int_{0}^{t} s X_{s} d X_{s}=\frac{1}{2}\left(t X_{t}^{2}-t^{2}\right)-\frac{1}{2} \int_{0}^{t}\left(X_{s}^{2}-s\right) d s
$$

This formula is true under which hypotheses:
(a) Only when X_{t} is a standard Brownian motion
(b) As long as X_{t} is an Ito process with $d X_{t}=a_{t} d t+d W_{t}$
(c) As long as X_{t} is an Ito process
(d) Only if X_{t} is a differentiable function of t.

Standard long answer questions

10. Suppose $X_{n+1}=2 X_{n}-X_{n-1}+Z_{n}$, where $Z_{n} \sim \mathcal{N}(0,1)$ i.i.d. Describe a value function and backward equation that can be used to calculate $\mathrm{P}\left(X_{T}>1 \mid X_{0}=X_{1}=0\right)$.
11. An order book holds orders, which are offers to buy or sell a given stock at a given price. An order in the book can be removed, or cancelled at any time. Suppose new orders arrive to the order book as a Poisson process with rate parameter λ. Suppose that the time until cancellation of any order is exponential with rate constant μ. Suppose all cancellations and inter-arrival times are independent. An event in the order book is an arrival of a new order or a cancellation of an existing order.
(a) Suppose there are n orders at the book at time t. What is probability distribution of the time until the next event?
(b) What is the probability that the next event is a cancellation?
(c) Assume there is a statistical steady state (there is). What is the expected number of orders in this steady state?
12. Suppose σ_{n} is a sequence of numbers with

$$
\sum_{n=1}^{\infty} \sigma_{n}^{2}<\infty
$$

Suppose that $X_{n} \sim \mathcal{N}\left(\sigma^{2}\right)$. Do not assume that the random variables X_{n} are independent of each other. Show that

$$
\sum_{n=1}^{\infty} X_{n}^{2}<\infty
$$

13. Suppose $0<T_{1}<T_{2}<\cdots$ are the random arrival times of a Poisson arrival process with rate constant λ. We want to construct a re-weighting function $L\left(t_{1}, t_{2}, \ldots\right)$ so that if $F\left(t_{1}, t_{2}, \ldots\right)$ is a function of the arrival times, then

$$
\mathrm{E}_{\mu}\left[F\left(T_{1}, T_{2}, \ldots\right)\right]=\mathrm{E}_{\lambda}\left[F\left(T_{1}, T_{2}, \ldots\right) L\left(T_{1}, T_{2}, \ldots\right)\right]
$$

We want to simulate a Poisson arrival process with rate λ, compute the functional F, reweight with the likelihood ratio L, and get the expectation with respect to the Poisson process with rate constant $\mu \neq \lambda$. The formula for L depends on the details.
(a) Find a formula for L if we simulate the λ process up to a fixed time t. The number of arrivals up to time t is uncertain. Hint: Imagine that you simulate the Poisson process by first choosing the number of arrivals and then choosing the arrival times independently and uniformly in $[0, t]$, then sort them.
(b) Find the formula for L if we simulate the λ process until a fixed number n of arrivals have happened. Hint: the joint PDF of the T_{k} depends only on T_{n} and the ordering.
14. Suppose X_{n} is a discrete time Gaussian process $X_{n+1}=a X_{n}+b Z_{n}$, where $Z_{n} \sim \mathcal{N}(0,1)$ are independent for different n and $X_{0}=0$. We are interested in the hitting probability

$$
A=\mathrm{P}\left(\left|X_{n}\right| \geq M \text { for some } n \leq T\right)
$$

Describe a Monte Carlo algorithm that evaluates A by simulating the Brownian random walk $X_{n+1}=X_{n}+b Z_{n}$. This is the original process with $a=1$. Give formulas for any quantities you need to compute, particularly likelihood ratios. Assume there is a random number generator that creates i.i.d. standard normals so that you can just use Z_{n} in formulas.
15. Let X_{t} be a Brownian motion with $\mathrm{E}\left[\left(X_{t}-X_{0}\right)^{2}\right]=t$, starting from $X_{0}=$ $a>0$. Let τ be the hitting time $\tau=\min \left\{t \mid X_{t}=0\right\}$. Calculate $\mathrm{E}\left[\tau^{-1}\right]$. Write the probability density or distribution function then calculate the appropriate integral involving it. Hint: use the change of variable $t=s^{-2}$ to do the integral.
16. Consider the square root process $d X_{t}=-a X_{t} d t+\sigma \sqrt{X_{t}} d W_{t}$. Suppose $X_{0}=1$.
(a) Use the Ito calculus to calculate $\frac{d}{d t} \mathrm{E}\left[X_{t}\right]$ and $\frac{d}{d t} \mathrm{E}\left[X_{t}^{2}\right]$. Use these results to write a formula for $\mathrm{E}\left[X_{t}\right]$ and a formula for $\mathrm{E}\left[X_{t}^{2}\right]$. Hint: if $\dot{v}=-2 a v+\sigma^{2} e^{-a t}$, you can find $v(t)$ using the ansatz $v=\alpha e^{-a t}+$ $\beta e^{-2 a t}$. You find α from the ODE and β from the initial condition, once α is known.
(b) Write the backward equation and use it to calculate $m(x, t)=\mathrm{E}_{x, t}\left[X_{T}\right]$. Assume an ansatz of the form $m(x, t)=A(t) x+B(t)$. Show that your answer is consistent with part (a).
(c) Use the backward equation to write a formula for $f(x, t)=\mathrm{E}_{x, t}\left[X_{T}^{2}\right]$. Assume an ansatz of the form $f(x, t)=A(t) x^{2}+B(t) x+C(t)$.
(d) Use some of these results to show that

$$
X_{t} \xrightarrow{\mathcal{D}} 0, \quad \text { as } t \rightarrow \infty .
$$

